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RESUMO 

 

O solo é essencial para a existência da vida na Terra e para o desempenho de serviços 

ecossistêmicos, tornando imperativo o monitoramento eficiente dos seus atributos. 

Tradicionalmente, o solo é avaliado por meio de análises laboratoriais de química úmida, 

todavia, esta técnica tem se mostrado onerosa e demorada. Como alternativa promissora, o 

sensoriamento próximo com a técnica de espectroscopia de reflectância destaca-se por 

permitir realizar análises pedológicas rápidas e de baixo custo, sendo especialmente vantajosa 

para o estudo de regiões heterogêneas e susceptíveis à degradação, como o Nordeste 

brasileiro. Diante desse contexto, o presente estudo teve como objetivos: - explorar o 

potencial dos espectros do visível ao infravermelho médio para caracterizar o comportamento 

espectral de solos da região Nordeste; - quantificar os atributos físico-químicos desses solos, 

incluindo a salinidade e a sodicidade, por meio da espectroscopia na faixa de 350 – 15000 nm 

e algoritmos de estatística multivariada. Foram avaliadas 114 amostras de solo, abrangendo 

nove ordens, coletadas em 24 perfis pedológicos distribuídos por 13 municípios do Ceará. Por 

meio das análises de química úmida foram determinados os atributos: carbono orgânico, 

nitrogênio total, fósforo disponível, potássio, cálcio, magnésio, sódio e alumínio trocáveis, 

condutividade elétrica, pH, soma de bases, capacidade de troca catiônica, saturação de bases e 

a percentagem de saturação por sódio. A análise espectral avaliou a reflectância do solo nas 

faixas do visível, infravermelho próximo, infravermelho de ondas curtas (vis-Nir-SWIR) e 

infravermelho médio (MIR), tendo sido esses dados pré-processados com as técnicas de 

suavização com o filtro Savitzky-Golay e conversão para absorbância. O resultado da análise 

convencional foi avaliado com estatística descritiva. Os dados suavizados foram submetidos a 

análise de componentes principais (ACP), e os escores da ACP foram utilizados para análise 

de agrupamento com o algoritmo de classificação não supervisionada Fuzzy K-médias. Para a 

quantificação dos atributos, os modelos preditivos foram desenvolvidos com os espectros 

brutos e pré-processados, utilizando-se os algoritmos de Regressão por Mínimos Quadrados 

Parciais, Máquina de Vetor Suporte com funções Kernel lineares e radiais e Algoritmo 

Cubista. O desempenho dos modelos preditivos foi avaliado pelas métricas de R², RMSE, 

RPD e RPIQ. Os resultados da análise qualitativa revelaram comportamentos espectrais com 

padrões distintos entre as ordens de solo. A classificação não supervisionada agrupou 

amostras com base nas características dos horizontes, com a região MIR demonstrando maior 

sensibilidade para identificar variações mais sutis entre os horizontes. Na análise quantitativa, 

todos os atributos foram preditos com desempenho, no mínimo, satisfatório, com exceção do 



 

cálcio que exibiu desempenho insatisfatório com R² inferior a 0,50. Os modelos 

desenvolvidos com dados do MIR superaram consistentemente o desempenho daqueles da 

faixa vis-NIR-SWIR para a maioria dos atributos. As predições da condutividade elétrica e da 

percentagem de saturação por sódio apresentaram desempenho razoável, evidenciando o 

potencial da técnica para o diagnóstico da salinidade e sodicidade dos solos. Esses resultados 

ratificam o potencial da espectroscopia de reflectância como uma ferramenta eficiente e 

alternativa para a caracterização e predição de atributos em solos heterogêneos. 

 

Palavras-chave: sensoriamento próximo; comportamento espectral; quantificação; 

salinidade; sodicidade. 



 

ABSTRACT 

 

Soil is essential for life on Earth and for the performance of ecosystem services, making 

efficient monitoring of its attributes essential. Traditionally, soil is evaluated through wet 

chemistry laboratory analyses, but this technique has proven to be costly and time-consuming. 

As a promising alternative, remote sensing using reflectance spectroscopy stands out for 

allowing rapid and low-cost pedological analyses, which is especially advantageous for the 

study of heterogeneous regions susceptible to degradation, such as Northeast Brazil. Given 

this context, the objectives of this study were: - to explore the potential of visible to mid-

infrared spectra to characterize the spectral behavior of soils in the Northeast region; - to 

quantify the physical and chemical attributes of these soils, including salinity and sodicity, 

using spectroscopy in the 350–15,000 nm range and multivariate statistical algorithms. A total 

of 114 soil samples were evaluated, covering nine orders, collected from 24 soil profiles 

distributed across 13 cities in Ceará. Through wet chemistry analyses, the following attributes 

were determined: organic carbon, total nitrogen, available phosphorus, exchangeable 

potassium, calcium, magnesium, sodium, and aluminum, electrical conductivity, pH, base 

sum, cation exchange capacity, base saturation, and sodium saturation percentage. Spectral 

analysis evaluated soil reflectance in the visible, near-infrared, short-wave infrared (vis-Nir-

SWIR), and mid-infrared (MIR) ranges, with data preprocessed using Savitzky-Golay 

smoothing and conversion to absorbance. The results of the conventional analysis were 

evaluated using descriptive statistics. The smoothed data were subjected to principal 

component analysis (PCA), and the PCA scores were used for cluster analysis with the 

unsupervised Fuzzy K-means classification algorithm. To quantify the attributes, predictive 

models were developed with raw and preprocessed spectra using Partial Least Squares 

Regression, Support Vector Machine with linear and radial kernel functions, and Cubist 

Algorithm algorithms. The performance of the predictive models was evaluated by the metrics 

R², RMSE, RPD, and RPIQ. The results of the qualitative analysis revealed spectral behaviors 

with distinct patterns between soil orders. Unsupervised classification grouped samples based 

on horizon characteristics, with the MIR region showing greater sensitivity to identify more 

subtle variations between horizons. In the quantitative analysis, all attributes were predicted 

with at least satisfactory performance, except for calcium, which showed unsatisfactory 

performance with R² below 0.50. The models developed with MIR data consistently 

outperformed those in the vis-NIR-SWIR range for most attributes. The predictions of 

electrical conductivity and sodium saturation percentage showed reasonable performance, 



 

highlighting the potential of the technique for diagnosing soil salinity and sodicity. These 

results confirm the potential of reflectance spectroscopy as an efficient and alternative tool for 

characterizing and predicting attributes in heterogeneous soils. 

 

Keywords: near-surface sensing; spectral behavior; quantification; salinity; sodicity. 
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1 INTRODUÇÃO GERAL 

 

O atual cenário de rápido crescimento populacional tem aumentado 

expressivamente a demanda por alimentos, conferindo ao solo papel central tanto para manter 

o equilíbrio ecológico quanto para promover a segurança alimentar. Diante disso, há o 

consenso de que a manutenção de solos saudáveis é a base para viabilizar a segurança 

alimentar e mitigar os efeitos das mudanças climáticas (Souza; Leite; Medeiros, 2021). Nesse 

contexto, o monitoramento eficiente dos sistemas edáficos é imperativo para promover a 

sustentabilidade dos recursos naturais. 

O monitoramento do solo é tradicionalmente realizado com análises laboratoriais 

de química úmida. Embora esses métodos sejam precisos e confiáveis, sua execução requer 

grandes quantidades de reagentes químicos, equipamentos de alto custo e múltiplas etapas 

analíticas, além do uso de diversos instrumentos (Beniaich et al., 2025). Como alternativa, as 

técnicas de sensoriamento próximo têm se destacado por realizar análises rápidas, com maior 

eficiência operacional e causando menor impacto ambiental (Yu et al., 2023). 

Nesse contexto, a espectroscopia de reflectância desponta como uma tecnologia 

promissora para a avaliação pedológica. Essa técnica avalia o solo com base na radiação 

eletromagnética refletida, sem que ocorra contato direto entre o sensor e o alvo (Mendes et 

al., 2022), sendo possível por meio de uma única leitura espectral avaliar os atributos físicos, 

químicos e mineralógicos do solo. A caracterização espectral é feita com base no princípio de 

que a diversidade, concentração e o tamanho dos componentes orgânicos e inorgânicos dos 

solos produzem comportamentos espectrais distintos (Rizzo et al., 2021), assim, cada solo 

possui sua própria assinatura espectral. 

A análise espectral do solo gera milhares de valores de reflectância (Padarian; 

Minasny; Mcbratney, 2019). O processamento desses dados envolve duas etapas importantes: 

o pré-processamento dos espectros brutos para extrair informações relevantes; e a modelagem 

estatística multivariada para predizer os atributos do solo a partir dos dados espectrais 

(Beniaich et al., 2025). A etapa de pré-processamento é considerada fundamental para 

remover ruídos, melhorar a qualidade do sinal e a estabilidade da regressão, havendo 

atualmente diversas técnicas disponíveis para tratamento espectral (Lotfollahi et al., 2023). 

Na etapa de modelagem realiza-se a calibração, validação e teste dos modelos, por 

meio de algoritmos de regressão linear e de aprendizado de máquina. Ainda que exista uma 

diversidade de algoritmos disponíveis para modelagem, nenhum é globalmente aceito e 

definido como padrão para a predição, uma vez que cada algoritmo possui vantagens e 
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limitações. Os métodos de regressão linear são simples e de fácil aplicação, dando resultados 

claros, contudo, são sensíveis a outliers. Os algoritmos de aprendizado de máquina, por sua 

vez, adaptam-se melhor a estruturas de dados complexos, porém, carecem de transparência 

durante a modelagem (Sun et al., 2024; Vasava; Das, 2022). 

As informações obtidas na análise espectral possuem grande relevância quando 

organizadas em bibliotecas espectrais, as quais consistem em bancos de dados de referência 

usados para auxiliar na compreensão do comportamento espectral do solo e na predição dos 

atributos. Embora existam bibliotecas de alcance continental e nacional, a utilidade de bancos 

de dados regionais não deve ser desconsiderada, visto que a análise espectral é complexa, 

sobretudo quando se usam bibliotecas compostas por solos formados sob diferentes materiais 

de origem, climas e relevos (Demattê et al., 2019; Moura-Bueno et al., 2020). Essa 

complexidade torna-se mais evidente na análise de áreas extensas, como o Brasil, cujas 

dimensões continentais resultam em elevada variedade edafoclimática. 

O território brasileiro abriga solos com características contrastantes entre suas 

regiões, destacando-se o Nordeste como exemplo notável dessa diversidade pedológica. Esta 

região apresenta predominância de clima semiárido, abriga o bioma Caatinga, exclusivo do 

Brasil, e possui uma ampla variedade de material geológico, o que propicia a ocorrência de 

solos que variam de rasos a profundos, de arenosos a argilosos e de  mineralogia caulinítica a 

esmectítica (Araújo Filho et al., 2022). 

A Caatinga é o terceiro bioma mais degradado do país, apresentando grande parte 

da sua vegetação modificada por atividades antrópicas (Souza; Leite; Medeiros, 2021). 

Associado a este cenário, o clima semiárido contribui para o agravamento da degradação das 

terras, especialmente pelo acúmulo de sais no solo, fenômeno comum em regiões áridas e 

semiáridas, intensificado pelo uso de água de má qualidade e por práticas de irrigação 

inadequadas (Hailu; Mehari, 2021). 

O excesso de sais no solo acarreta severos impactos sobre o desenvolvimento 

agrícola e a estabilidade dos ecossistemas, comprometendo a segurança alimentar em escala 

global (Sun et al., 2024). No Brasil, esse fenômeno manifesta-se de forma preocupante, 

sobretudo em áreas irrigadas, uma vez que o uso de água de baixa qualidade e a deficiência de 

sistemas de drenagem têm contribuído para a expansão de solos salinos e sódicos, 

especialmente em regiões semiáridas (Pessoa, et al., 2022). 

Essas particularidades tornam urgente a avaliação e o monitoramento dos solos do 

Nordeste brasileiro, sobretudo aqueles do bioma Caatinga. No entanto, esta região é pouca 

explorada cientificamente, de modo que a aplicação da espectroscopia de reflectância em 
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solos das regiões áridas e semiáridas ainda é incipiente (Taghdis; Farpoor; Mahmoodabadi, 

2022). Ainda assim, esta técnica é promissora para a avaliação em larga escala, representando 

alternativa eficiente, rápida e de baixo custo para áreas que carecem de métodos eficientes de 

monitoramento. 

Nesse contexto, esta tese avalia solos representativos do Nordeste brasileiro, 

realizando a sua caracterização espectral e a predição de atributos físicos e químicos. A 

pesquisa está estruturada em dois capítulos: o primeiro apresenta a caracterização do 

comportamento espectral de 24 perfis pedológicos, bem como uma análise de agrupamento 

baseada nos dados espectrais; e o segundo expõe a modelagem preditiva de 17 atributos dos 

solos. 

 

1.1 Hipóteses 

 

Este trabalho apresenta como hipóteses gerais:  

I) A espectroscopia de reflectância permite caracterizar de forma eficiente o 

comportamento espectral e os atributos dos solos, constituindo uma ferramenta adequada para 

identificação de características de solos típicos do Nordeste brasileiro; 

II) A espectroscopia de reflectância apresenta elevado potencial para a predição de 

atributos físicos e químicos dos solos, demonstrando ser uma técnica precisa e confiável. 
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2 REFERENCIAL TEÓRICO 

 

Nesta seção apresentam-se conceitos e panoramas teóricos que sustentam a base 

técnica desta pesquisa. Expõem-se aspectos relativos às características dos solos do Nordeste 

brasileiro. Discorre-se sobre o enfoque teórico da espectroscopia de reflectância e o 

comportamento espectral dos solos, e finaliza-se com a exploração das técnicas 

metodológicas para tratamentos dos dados espectrais. 

 

2.1 Solos do Nordeste brasileiro 

 

A região Nordeste abrange aproximadamente 18,2% do território nacional e 

apresenta a maior diversidade de solos do país, compondo um mosaico de pequenas áreas com 

distintas características pedológicas. A heterogeneidade edafoclimática dessa região favorece 

a ocorrência de diferentes biomas - Caatinga, Cerrado, Mata Atlântica e Floresta Amazônica -, 

que apresentam alta variabilidade dos recursos naturais, refletida nos diferentes solos, climas 

e tipos de vegetação (Souza; Leite; Medeiros, 2021). 

O bioma Caatinga é o de maior predominância no Nordeste, ocupando mais de 

50% da sua área e distribuindo-se pelos estados do Maranhão, Piauí, Ceará, Rio Grande do 

Norte, Pernambuco, Paraíba, Alagoas, Sergipe e Bahia, estendendo-se ainda por parte de 

Minas Gerais. Trata-se de um bioma exclusivamente brasileiro, caracterizado pelo clima 

semiárido, com altas temperaturas e longos períodos de estiagem. Sua vegetação destaca-se 

pela alta heterogeneidade, possuindo rica biodiversidade e muitas espécies endêmicas que são 

adaptadas às condições de semiaridez; contudo, encontra-se intensamente degradada pela ação 

antrópica (Alves; Araújo; Nascimento, 2009; Souza; Leite; Medeiros, 2021). 

Além da diversidade de biomas, a região Nordeste apresenta alta variabilidade de 

material geológico, abrangendo desde rochas cristalinas (ígneas e metamórficas) até 

sedimentares. Essa variedade litológica favorece a formação de variados tipos de solos com 

diferentes graus de intemperismo e desenvolvimento pedogenético (Araújo Filho et al., 2022), 

além de influenciar os atributos pedológicos. Neste perspectiva, a soma de bases (SB) dos 

solos é muito variável, sendo comum que nos locais em que as rochas são mais ricas em 

minerais máficos (rochas básicas) a SB varia de alta a muito alta. Por outro lado, nos locais 

em que os materiais são rochas félsicas (ácidas), frequentemente os valores de SB são baixos 

(Souza; Leite; Medeiros, 2021). 
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A natureza do material parental influencia, também, o tipo de minerais presentes 

no solo. Os materiais cristalinos são em sua maioria muito resistentes à erosão e ao 

intemperismo, assim, solos desenvolvidos a partir destas rochas possuem forte correlação com 

o material de origem, apresentando comumente profundidade limitada e minerais primários na 

composição, além de minerais secundários menos intemperizados (argilas do tipo 2:1). Em 

contrastante, os solos oriundos de materiais sedimentares são mais desenvolvidos e mais 

profundos, com predomínio de minerais mais intemperizados como os argilominerais 

secundários do tipo 1:1 e oxídicos (Ximenes, et al., 2019). 

Associado a variabilidade de material geológico, o clima característico da região 

Nordeste favorece a heterogeneidade pedológica. Á medida que a precipitação é limitada 

nessa região, o clima reduz sua ação mitigando a atuação dos processos pedogenéticos, o que 

faz com o material de origem passe a assumir importante função na diferenciação dos solos 

(Saraiva, et al., 2020). Diante disso, os solos da região destacam-se por conservar, em grande 

parte, feições herdadas do material de origem, de modo a refletir o seu ambiente de formação 

(Souza, 2020). 

Entre os solos presentes na região Nordeste destacam-se as seguintes classes pela 

área ocupada: Latossolos (30,4%), Neossolos (24,0%), Argissolos (18,0%), Luvissolos 

(7,4%), Planossolos (7,4%), Plintossolos (6,3%), Cambissolos (2,4%) e Gleissolos (1,3%) e 

em menor percentual os Vertissolos (0,3%) (Souza; Leite; Medeiros, 2021). As principais 

características desses solos, definidas segundo o Sistema Brasileiro de Classificação de Solos 

(Santos et al., 2025), estão disponíveis na Tabela 1. 
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Tabela 1 - Características dos principais solos presentes na região Nordeste, conforme o 

Sistema Brasileiro de Classificação de Solos 

Ordem Característica 

Argissolo 

Solo com horizonte diagnóstico B textural com argila de atividade baixa ou 

alta, desde que conjugada com saturação por bases baixa ou caráter alumínico. 

Possui profundidade variável, geralmente é muito intemperizado, bem 

desenvolvido, ácido, com mineralogia predominante de argilominerais do tipo 

1:1 (caulinita) e relação molecular Ki entre 1,0 e 3,3. 

Cambissolo 

Solos com horizonte B incipiente com textura franco-arenosa ou mais fina e 

com o solum apresentando teores uniformes de argila, podendo ocorrer ligeira 

redução ou um pequeno incremento de argila do horizonte A para o B 

incipiente. Possui baixo desenvolvimento e pedogênese pouco avançada 

evidenciada pelo desenvolvimento da estrutura do solo. 

Gleissolo 

Solos minerais, hidromórficos, formados principalmente a partir de sedimentos, 

estratificados ou não. Apresentam expressiva gleização devido ao ambiente 

redutor virtualmente livre de oxigênio dissolvido em razão da saturação por 

água permanente ou periódica. Não possuem nenhum tipo de horizonte B 

diagnóstico acima do horizonte glei, o qual pode ser um horizonte C, B, E ou 

A.  

Latossolo 

Solo com horizonte diagnóstico B latossólico abaixo de qualquer horizonte 

superficial, exceto hístico. Possui avançada intemperização, sendo bem 

desenvolvido e, geralmente, muito profundo e ácido. É virtualmente destituído 

de minerais primários, com mineralogia variando de caulinita e valores de Ki 

em torno de 2,0 podendo ser 2,2, até solos oxídicos com Ki muito baixos.  

Luvissolo 

Solo com horizonte diagnóstico B textural com argila de atividade alta e 

saturação por bases alta, abaixo de horizonte A ou E. Comumente, é pouco 

profundo, medianamente intemperizado, moderadamente ácido e ligeiramente 

alcalino. Possui relação molecular Ki alta variando de 2,4 a 4,0, indicando 

mineralogia com expressiva presença de argilominerais do tipo 2:1. 

Neossolo 

Solo formado por material mineral ou orgânico, sem a presença de horizonte B 

diagnóstico. É pouco profundo, com baixo desenvolvimento e com predomínio 

das características do material parental devido à baixa atuação dos processos 

pedogenéticos. Possui individualização de horizonte A seguido por C ou R. 

Planossolo 

Solo com horizonte B plânico abaixo de qualquer horizonte A ou E. Apresenta 

diferenciação bem acentuada entre os horizontes A ou E com o B, em virtude 

da mudança textural abrupta. Ocorre preferencialmente em relevos plano ou 

suave ondulado e possui restrição à permeabilidade em subsuperfície. 

Plintossolo 

Solo com expressiva plintitização com ou sem formação de petroplintita, 

podendo apresentar horizonte B textural sobre ou coincidente com o horizonte 

plíntico ou concrecionário. Normalmente, é fortemente ácido, com saturação 

por bases baixa e atividade da fração argila baixa. Típicos de zonas quentes e 

úmidas, geralmente com estação seca bem definida. 

Vertissolo 

Solo com horizonte vértico, pequena variação textural ao longo do perfil e com 

expressivo fendilhamento desde a superfície. Possui desenvolvimento restrito 

pela grande capacidade de movimentação do material constitutivo, alta 

saturação por bases, teores elevados de cálcio e magnésio e alta relação Ki. 
Fonte: Adaptado de Santos et al. (2025). 
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2.2 Espectroscopia de reflectância 

 

A espectroscopia é o termo usado para se referir à técnica de obtenção de dados 

por meio da absorção, transmissão ou reflexão da energia radiante que incide em um material 

(Meneses; Almeida; Baptista, 2019). No estudo do solo com espectroscopia de reflectância, a 

informação é obtida sem que haja contato entre sensor e alvo, sendo analisada a energia 

refletida proveniente da interação dos componentes minerais e orgânicos do solo com a 

radiação eletromagnética (Mendes et al., 2022). 

A energia eletromagnética refletida é mensurada com um espectrorradiômetro, o 

qual gera resultados numéricos expressos na forma de um gráfico chamado de curva de 

reflectância espectral. No gráfico, o eixo X evidencia os comprimentos de onda e o eixo Y o 

fator de reflectância. Nessa perspectiva, cada solo tem uma curva espectral, ou seja, sua 

assinatura espectral própria, que é uma propriedade cumulativa derivada das características 

intrínsecas do solo (Demattê, 2002). 

Quando a energia eletromagnética interage com um material, parte da radiação é 

absorvida e parte é refletida, sendo as feições de absorção da curva espectral governadas por 

dois processos gerais chamados de: eletrônico e vibracional (Coblinski et al., 2020). Nesse 

sentido, as absorções espectrais ocorrem devido às transições eletrônicas dos átomos e às 

vibrações de alongamento e de dobramento de grupos de átomos que formam as moléculas e 

os cristais (Meneses; Almeida; Baptista, 2019). 

As transições eletrônicas requerem maiores quantidades de energia e ocorrem em 

íons com elétrons desemparelhados. O processo vibracional, por sua vez, é resultado das 

vibrações das ligações em uma molécula, de modo que cada vibração possui uma frequência, 

sendo esse processo dividido em vibração fundamental e não fundamental (Madeira Netto; 

Baptista, 2000). As transições eletrônicas acontecem no visível e infravermelho próximo, as 

vibrações não fundamentais incidem no infravermelho próximo e de ondas curtas, e as 

vibrações fundamentais ocorrem no infravermelho médio (Silvero et al., 2020). 

Na espectroscopia de reflectância a faixa amplamente usada para estudos 

qualitativos e quantitativos dos solos compreende ao visível (vis: 350-700 nm), ao 

infravermelho próximo (NIR: 700-1100 nm) e ao infravermelho de ondas curtas (SWIR: 

1100-2500 nm) (Demattê et al., 2019). A faixa do infravermelho médio (MIR: 2500-25000 

nm ou 4000-400 cm
-1

), embora ofereça grande potencial para o estudo do solo, tem sido 

aplicada em menor intensidade, sendo as pesquisas para identificar as principais feições 
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espectrais dessa faixa incipientes em solos tropicais (Silvero et al., 2020). Todavia, nos 

últimos anos o número de estudos do solo nessa faixa aumentou significativamente. 

As medições espectrais na faixa do visível ao infravermelho de ondas curtas são 

realizadas tanto em campo quanto em laboratório, já as medições no infravermelho médio 

ocorrem em laboratório. Quando os comprimentos de ondas são mensurados em laboratório, a 

existência de condições controladas e sem interferência da atmosfera garante maior 

confiabilidade ao relacionar a reflectância com a composição do material, e maior precisão na 

avaliação das características. Os resultados das amostras de laboratório são usados para 

compor grandes bancos de dados, chamados de bibliotecas espectrais, que são formadas por 

amostras espectrais representativas de solos (Meneses; Almeida; Baptista, 2019). 

As medições espectrorradiométricas realizadas em campo podem retratar mais 

fielmente as condições pedológicas e dar uma boa representação da variabilidade espacial do 

solo, todavia, apresentam o inconveniente do efeito do ambiente, como a umidade do ar e a 

luminosidade, além de sofrer variações do ângulo de observação, da rugosidade do solo e do 

manejo. Dessa maneira, geralmente as avaliações de campo geram resultados menos precisos 

que as análises espectrais de laboratório, especialmente pelas condições naturais 

descontroladas no campo (Rizzo et al., 2021). 

 

2.3 Comportamento espectral do solo 

 

O comportamento espectral do solo é condicionado por suas características e tem 

relação direta com os atributos físicos, químicos e mineralógicos, de modo a refletir os 

processos pedogenéticos incidentes e as condições ambientais (Demattê et al., 2017). Logo, 

alterações na composição edáfica modificam a assinatura espectral, sendo que os caminhos da 

radiação eletromagnética recebida pelos componentes do solo dependem de fenômenos de 

interações macroscópicas (física) e microscópicas (química) (Terra et al., 2021). 

A interação macroscópica é responsável pela intensidade com que um objeto 

reflete a radiação eletromagnética em função do tamanho da onda e da textura do objeto, 

sendo sua atuação maior nos grandes comprimentos de onda das micro-ondas, nos quais a 

baixa energia não possibilita que ocorram interações no nível de átomo e de molécula. Esse 

fenômeno resulta das propriedades físicas e texturais do solo, como distribuição do tamanho 

das partículas e estrutura (Meneses; Almeida, 2012; Meneses; Almeida; Baptista, 2019). 

Com relação à interação microscópica, ondas de pequeno comprimento possuem 

elevada energia, o que possibilita uma intensa interação microscópica da matéria e define as 
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relações entre absorção e reflectância. Essas interações são identificadas nos espetros pelos 

picos de queda da reflectância, de modo que são responsáveis pelas feições de absorção no 

espectro, sendo dependentes da composição mineral e orgânica do solo. Esse fenômeno 

microscópico está relacionado à absorção da radiação eletromagnética por átomos e moléculas 

(Meneses; Almeida; Baptista, 2019; Rizzo et al., 2021). 

O comportamento espectral do solo tem sido avaliado com sucesso nas últimas 

décadas, sendo essencial para isso aplicar metodologias que possibilitem interpretar 

adequadamente o espectro do solo. A análise descritiva da assinatura espectral é 

imprescindível para a caracterização do solo, a sua aplicação é baseada na observação de 

alguns aspectos na curva espectral, como: intensidade de reflectância (albedo), características 

de absorção (profundidade e amplitude) e forma espectral. A avaliação de alterações na curva 

permite diferenciar os solos de acordo com sua intensidade de reflectância (Demattê, 2002). 

A espectroscopia de reflectância tem possibilitado estimar importantes 

propriedades do solo, tendo ocorrido nos anos de 1960 a determinação de diversos padrões de 

curvas espectrais do solo, as quais apresentaram grande relação com seus constituintes 

(Meneses; Almeida; Baptista, 2019). Nessa perspectiva, a espectroscopia vem sendo bastante 

empregada para avaliar os teores de argila, areia e carbono no solo (Rizzo et al., 2021). 

O carbono orgânico do solo foi estimado com sucesso por Ribeiro et al. (2021) 

usando a reflectância espectral e métodos de regressão, tendo o método de mínimos 

quadrados parciais alcançado a predição mais robusta. Já a textura do solo foi predita por 

Coblinski et al. (2020) a partir da análise da assinatura espectral, tendo sido observado que a 

previsão da textura foi mais precisa quando se combinou profundidades de avaliação. 

Em estudo para avaliar a eficácia do vis-NIR-SWIR e MIR na caracterização e 

predição de alguns atributos do solo, Naimi et al. (2022) verificaram que o Vis-NIR-SWIR 

alcançou resultados melhores para textura do solo que o MIR. Contudo, essas faixas não 

possibilitaram predizer a salinidade do solo. Já para os minerais, a predição é possível a partir 

da associação da espectroscopia com a regressão linear múltipla (Demattê; Terra, 2014). As 

feições de absorção dos minerais podem ser observadas na faixa vis-NIR-SWIR, todavia, as 

principais feições e outras características estão no MIR (Silvero et al., 2020). 

A espectroscopia gera inúmeros dados espectrais que são organizados em um 

grande banco de dados, chamado de biblioteca espectral. Atualmente, existem no mundo 

diversas bibliotecas espectrais que reúnem dados de solos de diferentes países. No Brasil, a 

biblioteca Brazilian Soil Spectral Library (BSSL) teve início em 1995 visando criar um banco 

de dados dos solos do país a partir de uma rede de colaboradores (Demattê et al., 2019). 
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2.4 Fatores que influenciam o comportamento espectral do solo 

 

O comportamento espectral do solo é influenciado por constituintes minerais e 

orgânicos, como a matéria orgânica, filossilicatos, óxidos, umidade e a distribuição 

granulométrica (Dalmolin et al., 2005). Esses atributos são classificados como relações 

espectrais de primeira ordem e influenciam diretamente o espectro, modificando a intensidade 

de reflectância e as características de absorção (Terra et al., 2021). 

 

2.4.1 Efeito da matéria orgânica, mineralogia, umidade e granulometria 

 

A matéria orgânica do solo (MOS) é formada por uma mistura complexa de 

substâncias de carbono com diferentes características físicas e químicas. No solo há 

predomínio de material orgânico nas camadas superficiais, ao passo que nas camadas 

subsuperficiais a concentração de matéria orgânica é menor, uma vez que na superfície do 

solo há aporte constante, tanto pela deposição de material vivo, como pela decomposição. 

Esse material é um constituinte primário da coloração, de modo a alterar a cor da matriz 

edáfica, possui estreita relação com a reflectância do solo. Quando o material orgânico 

aumenta, a energia refletida do solo diminui, visto que a matéria orgânica absorve energia 

(Madeira Netto; Baptista, 2000; Sousa Junior et al., 2008).  

O efeito da matéria orgânica na assinatura espectral do solo pode ser verificado 

pela sua remoção da composição pedológica, o que promove aumento do fator de reflectância 

(Demattê; Epiphanio; Formaggio, 2003). Todavia, ressalta-se que a modificação da 

reflectância pela remoção da matéria orgânica tende a ser mais perceptível nos solos de 

textura mais grosseira, quando comparados aos de textura mais argilosa, em virtude da 

formação de uma camada orgânica protetora ao redor das partículas grosseiras. Assim, nos 

solos arenosos há diminuição da reflectância com a presença da matéria orgânica (Demattê et 

al., 2005). 

A influência do material orgânico é tão forte na reflectância do solo que pode até 

mesmo mascarar a ação de outros constituintes sobre o espectro, conforme verificado por 

Demattê et al. (2006) em que o horizonte A do solo exibiu menor refletância e bandas de 

absorção mais atenuadas em relação aos horizontes subsuperficiais, devido a maior 

concentração desse material na superfície. A MOS pode mascarar os efeitos dos óxidos de 

ferro do solo e afetar as bandas de absorção deste constituinte e, consequentemente, interferir 

na resposta espectral (Demattê; Epiphanio; Formaggio, 2003). 
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Além do teor de matéria orgânica, a sua composição também influencia a 

reflectância do solo. Estudos evidenciam que a variação de reflectância entre solos com teor 

semelhante de matéria orgânica se deve às diferentes composições do material, contudo, esta 

hipótese não tem confirmação experimental. Apesar disso, análises espectrais de laboratório 

indicam que as características de reflectância dos ácidos húmicos e fúlvicos são diferentes, 

embora essas relações não sejam bem compreendidas (Meneses; Almeida; Baptista, 2019). 

Com relação aos minerais, a caracterização mineralógica tem grande importância 

na avaliação da assinatura espectral dos solos, uma vez que os minerais conferem várias 

feições de absorção e influenciam o albedo (Dalmolin et al., 2005). Tendo em vista que o solo 

é um sistema complexo, pode ocorrer mistura de minerais, em que as bandas de absorção 

ficam muito próximas ou até se apresentam sobrepostas. Diante disso, para caracterizar esses 

materiais é preciso observar a dissimetria existente na curva, a profundidade das bandas de 

absorção e a presença de absorções secundárias (Meneses; Almeida; Baptista, 2019). 

A resposta espectral dos minerais varia em função de sua composição. Minerais 

transparentes como o quartzo, possuem alta intensidade de reflectância por não absorverem 

energia (Rizzo et al., 2021). Os minerais de argila do tipo filossilicato, que são divididos 

quanto a sua estrutura em 2:1 e 1:1, apresentam bandas de absorção, principalmente, em três 

comprimentos de onda do SWIR: 1400, 1900 e 2200 nm. Em geral, estas feições estão ligadas 

à transição do modo vibracional de um estado de energia para outro nível de energia 

(overtones) e às combinações de vibrações fundamentais do MIR (Genú et al., 2010). 

O argilomineral do tipo 1:1 mais comumente encontrado nos solos tropicais é a 

caulinita, suas principais feições de absorção estão associadas às vibrações moleculares das 

hidroxilas, as quais são mais visíveis nos comprimentos de onda de 1400 e 2200 nm. 

(Madeira Netto; Baptista, 2000). Já os argilominerais do tipo 2:1, como por exemplo, as 

esmectitas, são típicos de solos menos intemperizados. Demattê et al. (2006) verificaram em 

um Vertissolo que houve predomínio de esmectita como filossilicato do tipo 2:1, tendo sido a 

feição caracterizada por picos de absorção em 1400 e 1900 nm. Na faixa do MIR as feições 

dos argilominerais ocorrem entre 3620-3484 cm
-1 

(Terra et al., 2021). 

De modo semelhante aos argilominerais 2:1 e 1:1, os óxidos de ferro, também 

possuem grande influência no comportamento espectral dos solos (Cezar et al., 2013). A 

goethita e a hematita são óxidos frequentemente encontrados nos solos tropicais e 

subtropicais, e são oriundos da oxidação do ferro (Fe
+2

) presentes nos minerais primários 

durante a formação do solo. Esses óxidos possuem diferentes características de absorções 

espectrais nas faixas do ultravioleta e do vis-NIR (Meneses; Almeida; Baptista, 2019). 
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A hematita e a goethita estão fortemente ligadas à cor do solo e exibem respostas 

espectrais em comprimentos de onda diferentes em virtude de suas características estruturais 

específicas (Genú et al., 2010). Suas feições de absorção são caracterizadas pelas posições 

centrais em torno de 480 nm para goethita e 513 nm para hematita e pelas variações de 

intensidade e amplitude das feições (Demattê; Terra, 2014). As feições espectrais desses 

óxidos observadas no espectro vis-NIR estão principalmente ligadas a interações entre a 

radiação e os íons na estrutura cristalina dos óxidos (Rizzo et al., 2021). 

Outros minerais que pertencem ao grupo de óxidos de Fe é a magnetita e a 

ilmenita, que são considerados como minerais acessórios. Esses óxidos possuem feições 

espectrais chamadas de opacas e os seus valores de reflectância, geralmente, são menores que 

5% no espectro Vis-NIR; com isso, sua presença no solo reduz a intensidade de reflectância. 

Além disso, os solos tropicais possuem óxidos de alumínio, sendo a gibsita o mais comum. 

Sua principal feição espectral ocorre em 2265 nm (Madeira netto; Baptista, 2000) e entre 

3529-3394 cm
-1

, devido à vibração molecular das hidroxilas (Mendes et al., 2022). 

No que se refere ao efeito da água sobre o espectro, os solos úmidos possuem 

aparência mais escura do que quando estão secos. Tal fato é resultado das características de 

absorção da água que causam redução na reflectância da radiação incidente no espectro 

(Epiphanio et al., 1992). O aumento do teor de umidade do solo reduz a reflectância devido às 

reflexões internas no filme de água que recobre as partículas do solo; por isso, os solos 

úmidos possuem aparência mais escura (Dewitte et al., 2012).  

A água presente no solo é responsável pela redução do albedo em todas as regiões 

do espectro. A reflectância do solo é afetada pelas bandas de absorção centradas no espectro 

em 760, 970, 1.190, 1.450 e 1.940 nm (Madeira Netto; Baptista, 2000). Contudo, ressalta-se 

que, de modo geral, não ocorrem grandes alterações na forma das curvas espectrais em função 

da mudança de umidade, com exceção das feições típicas de absorção de água em 1400 e 

1900 nm (Dalmolin et al., 2005). 

A água é considerada um dos atributos que possui maior interferência nos dados 

espectrais em virtude do efeito que possui sobre a reflectância (Demattê et al., 2006). Desse 

modo, a umidade do solo pode afetar a sua assinatura espectral, conforme foi verificado por 

Silvero et al. (2020) em estudo do efeito da água, da matéria orgânica e de formas de Fe no 

espectro do infravermelho médio. Os autores observaram que a adição de água ao solo 

mascarou diversas características de absorção e promoveu redução da intensidade de 

refletância de 3700 cm
-1 

para 2700 cm
-1 

no MIR. 

Quanto ao efeito da granulometria, a reflectância do solo é afetada pelo tamanho e 
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arranjo que as partículas assumem em relação ao ar e a água do solo (Epiphanio et al., 1992). 

Nesse sentido, a intensidade de reflectância varia em função da distribuição do tamanho das 

partículas, da estrutura e da sua rugosidade (Rizzo et al., 2021). A ocorrência de superfícies 

mais rugosas no solo aumenta o sombreamento e a reflectância, atenuando a intensidade do 

espectro. Por outro lado, a redução da rugosidade da superfície promove ligeiro aumento da 

reflectância (Dewitte et al., 2012). 

Em regra, o tamanho das partículas do solo possui relação inversa com a 

reflectância, de modo que quanto menor o tamanho das partículas maior será o albedo 

(Meneses; Almeida; Baptista, 2019). Tal fato ocorre em virtude de os grãos maiores 

produzirem superfícies mais irregulares, com sombreamentos e maior retroespalhamento 

interno da luz, enquanto partículas menores criam superfícies mais uniformes, com menor 

quantidade de poros para reter a luz incidente (Sousa Junior et al., 2008). 

Já quando se refere à composição das partículas, solos que possuem menor teor de 

argila, ou seja, com predominância de areia, apresentam maior valor de energia refletida, 

enquanto solos com maior quantidade de argila possuem baixo albedo (Demattê; Terra, 2014). 

Esse efeito das partículas primárias no comportamento espectral foi constatado por Sousa 

Junior et al. (2008), em que solos da mesma ordem taxonômica, contudo de classes texturais 

distintas, exibiram diferentes comportamentos espectrais, de modo que aqueles com textura 

mais arenosa apresentaram maior albedo ao longo da curva espectral. 

Além do efeito da granulometria sobre o espectro, o comportamento espectral do 

solo é influenciado pelos minerais que compõem as partículas argila e areia. A baixa 

reflectância de solos argilosos é resultado, especialmente, da maior formação de agregados no 

solo e da presença de minerais opacos, o que promove maior absorção da energia incidente 

(Bellinaso et al., 2010). Para solos arenosos, a maior intensidade da refletância ocorre em 

virtude da sílica presente no mineral quartzo (Terra et al., 2018). 

 

2.5 Processamento de dados espectrais e estimativa dos atributos do solo 

 

As análises espectrais produzem uma grande quantidade de dados acerca do solo. 

Diante disso, metodologias têm sido aplicadas para extrair informações úteis do espetro. As 

técnicas de pré-processamento dos dados brutos são comumente usadas a fim de se aumentar 

a eficiência das análises e de reduzir o elevado número de dados, os quais podem prejudicar o 

potencial dos modelos de predição dos atributos (Souza; Madari; Guimarães, 2012). 

As técnicas de pré-processamento auxiliam na melhoria da interpretação da 
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assinatura espectral e na obtenção de modelos preditivos mais precisos, por meio da redução 

do ruído no espectro, melhoraria das feições espectrais relacionadas aos atributos do solo, 

remoção dos efeitos de espalhamento de luz e diminuição da dimensionalidade dos dados. 

Dentre as técnicas mais usadas pode-se citar: transformação em absorbância, correção de 

espalhamento multiplicativo, variação normal padrão, transformação de Savitzky-Golay, 

filtros de média móvel, remoção de contínuo e correção de linha de base (Rizzo et al., 2021). 

Ressalta-se que não existe um método de pré-processamento único que seja tido 

como ideal para qualquer situação. O emprego das técnicas de processamento pode até 

mesmo não promover nenhuma melhoria no desempenho preditivo, conforme constatado por 

Mendes et al. (2022), em que os modelos de predição com dados pré-processados ou com 

dados de infravermelho médio brutos não exibiram diferenças razoáveis, indicando que os 

espectros processados não conseguiram reduzir a relação sinal-ruído. 

Após o pré-processamento dos dados espectrais, realiza-se a divisão do conjunto 

de informações visando desenvolver os modelos de predição. As amostras são separadas em 

dois grupos: um destinado a treinar o modelo e outro a testar. Normalmente, utiliza-se cerca 

de 70% dos dados para o treinamento e 30% para teste. A etapa de treinamento tem como 

finalidade construir um modelo empírico multivariado capaz de associar os dados espectrais 

às características do solo de interesse, possibilitando a predição dos atributos (FAO, 2022). 

Nos dados selecionados para treinamento, aplicam-se métodos estatísticos que 

permitem aos modelos estimar quantitativamente os atributos. Essa análise fundamenta-se na 

hipótese de que há uma relação direta entre a concentração de determinado constituinte e uma 

propriedade espectral correspondente. A relação matemática formada entre esses dois fatores é 

denominada de equação de calibração, a qual é gerada a partir dos dados de treinamento e 

usada para estimar a concentração de novas amostras, desde que os espectros que sejam 

obtidos em equipamentos e condições semelhantes (Meneses; Almeida; Baptista, 2019). 

A modelagem de calibração é desenvolvida a partir das relações entre os atributos 

do solo, determinados em análises laboratoriais tradicionais, e os dados obtidos nas análises 

espectrais. Essa calibração é feita por meio de métodos de regressão multivariada ou de 

aprendizado de máquina, como random forest, redes neurais e deep learning, entre outros. 

Dentre as técnicas de estatística multivariada destacam-se a regressão linear múltipla (MLR), 

a regressão por componentes principais (PCR) e a regressão por mínimos quadrados parciais 

(PSLR) (Meneses; Almeida; Baptista, 2019; Shepherd et al., 2022). 

Os modelos desenvolvidos para a predição de atributos do solo possibilitam 

estimar variações em sua composição, sendo o desempenho dessas predições influenciado 
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pela população amostral e pela representatividade dos dados analisados. Conforme 

observaram Paiva et al. (2022) que, de modo geral, os modelos calibrados com conjunto de 

dados locais apresentaram melhor desempenho do que aqueles com amostras regionais ou 

nacionais. Esses resultados sugerem que, independentemente do número de amostras, a 

qualidade e representatividade dos dados são imprescindíveis para gerar modelos confiáveis. 

O desempenho dos modelos é avaliado por meio de parâmetros estatísticos, como 

o erro médio (ME), a raiz do erro quadrático médio (RMSE) e o coeficiente de determinação 

(R
2
) (FAO, 2022). Outro indicador amplamente empregado na avaliação de modelos 

preditivos é a razão de desempenho para intervalo interquartil (RPIQ). Na literatura ainda não 

há um valor crítico definido para o RPIQ; com isso, têm sido adotadas referências baseadas 

no parâmetro razão de desempenho do desvio (RPD). De modo geral, valores elevados de R
2
 

e RPIQ, associados a valores reduzidos de RMSE, indicam previsões com qualidade de boa à 

excelente (Luce et al., 2022). 
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3 CAPÍTULO I - CARACTERIZAÇÃO ESPECTRAL DO VISÍVEL AO 

INFRAVERMELHO MÉDIO DE SOLOS DO NORDESTE BRASILEIRO 

 

RESUMO 

 

O solo é um recurso essencial para a vida, tornando indispensável sua caracterização e a 

identificação da distribuição espacial. A espectroscopia de reflectância é uma ferramenta 

eficaz para potencializar a caracterização e auxiliar na classificação de solos, especialmente 

em países de grandes dimensões. Nesse sentido, o objetivo deste trabalho foi explorar o 

potencial dos espectros vis-NIR-SWIR e MIR para caracterizar solos do Nordeste brasileiro 

quanto aos seus comportamentos espectrais, bem como identificar variações espectrais e 

similaridades dos perfis de solo pertencentes a diferentes classes. Foram avaliadas 114 

amostras de 24 perfis de solos oriundos de municípios do Ceará. O solo foi avaliado com 

metodologia convencional de química úmida para determinar os atributos físicos e químicos, 

e com metodologia espectral para avaliar sua reflectância nas faixas do visível, infravermelho 

próximo, infravermelho de ondas curtas (vis-Nir-SWIR) e infravermelho médio (MIR). Os 

dados espectrais foram pré-processados por meio da suavização com o filtro Savitzky-Golay, 

e o comportamento espectral das curvas foi caraterizado por perfil de solo. Foi avaliada a 

distribuição de frequência das classes pedológicas, e os resultados das análises convencionais 

foram submetidos à estatística descritiva. Além disso, foi realizada a análise de correlação 

multivariada entre os atributos do solo e os valores de reflectância espectral suavizados. A 

análise de componentes principais (ACP) foi efetuada nos dados espectrais visando reduzir a 

dimensão dos dados no espaço multivariado. Em seguida, com os escores resultantes da ACP 

foi feito a análise de agrupamento usando o algoritmo de classificação não supervisionada 

Fuzzy K-médias. Os Neossolos e Argissolos foram os solos com maior representação nesse 

estudo. O comportamento espectral dos perfis apresentou padrões distintos em função da 

ordem de solo. A classificação não supervisionada agrupou amostras com base nas 

características dos horizontes. A faixa vis-NIR-SWIR distinguiu seis classes de espectros do 

solo, ao passo que na faixa MIR houve a separação em nove classes de espectros. Esse estudo 

comprova a eficiência da espectroscopia na caracterização e distinção de classes de solo. 

 

Palavras-chave: espectroscopia; comportamento espectral; agrupamento; horizonte do solo. 
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ABSTRACT 

 

Soil is an essential resource for life, making its characterization and spatial distribution 

identification indispensable. Reflectance spectroscopy is an effective tool for enhancing 

characterization and assisting in soil classification, especially in large countries. In this sense, 

the objective of this study was to explore the potential of vis-NIR-SWIR and MIR spectra to 

characterize soils in Northeast Brazil in terms of their spectral behavior, as well as to identify 

spectral variations and similarities in soil profiles belonging to different classes. A total of 114 

samples from 24 soil profiles from municipalities in Ceará were evaluated. The soil was 

evaluated using conventional wet chemistry methodology to determine its physical and 

chemical attributes, and spectral methodology to evaluate its reflectance in the visible, near-

infrared, short-wave infrared (vis-Nir-SWIR), and mid-infrared (MIR) ranges. The spectral 

data were preprocessed using Savitzky-Golay smoothing, and the spectral behavior of the 

curves was characterized by soil profile. The frequency distribution of the soil classes was 

evaluated, and the results of the conventional analyses were subjected to descriptive statistics. 

In addition, multivariate correlation analysis was performed between soil attributes and 

smoothed spectral reflectance values. Principal component analysis (PCA) was performed on 

the spectral data to reduce the dimension of the data in the multivariate space. Then, with the 

scores resulting from the PCA, cluster analysis was performed using the unsupervised Fuzzy 

K-means classification algorithm. Neosols and Argisols were the most represented soils in this 

study. The spectral behavior of the profiles showed distinct patterns depending on the soil 

order. The unsupervised classification grouped samples based on the characteristics of the 

horizons. The vis-NIR-SWIR band distinguished six classes of soil spectra, while the MIR 

band separated them into nine classes. This study proves the efficiency of spectroscopy in 

characterizing and distinguishing soil classes. 

 

Keywords: spectroscopy; spectral behavior; clustering; soil horizon. 
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3.1 Introdução 

 

O solo possui papel essencial para a existência da vida na Terra, desenvolvendo 

uma ampla gama de serviços ecossistêmicos e atuando como um recurso básico para diversas 

atividades humanas. Dada à importância desse recurso natural, existem na atualidade diversas 

aplicações que demandam um elevado volume de informações edáficas com alta resolução 

(Ge; Wadoux; Peng, 2022). Diante disso, é cada vez mais indispensável caracterizar o solo e 

conhecer sua distribuição espacial, visando promover o uso sustentável e o manejo adequado. 

Tradicionalmente, o solo é caracterizado por meio de análises laboratoriais de 

química úmida, as quais servem de base para a classificação pedológica. Contudo, tais 

análises são onerosas, demoradas e possuem potencial de causar contaminação ambiental pela 

geração de resíduos perigosos (Mendes et al., 2022). Essas limitações são ainda mais 

intensificadas no contexto dos solos brasileiros. Por ser o maior país da América do Sul e o 

quinto maior do mundo, o Brasil enfrenta um grande desafio para a caracterização e o 

mapeamento pedológico de sua extensa área territorial (Demattê et al., 2019). 

Nessa perspectiva, a espectroscopia de reflectância tem se destacado como 

alternativa promissora e um método eficiente em estudos de gênese, monitoramento e gestão 

do solo (Taghdis; Farpoor; Mahmoodabadi, 2022). Esta técnica possibilita estimar 

simultaneamente os atributos físicos, químicos e mineralógicos a partir de uma única leitura 

espectral, permitindo a aquisição rápida de dados do solo, de forma não destrutiva e sem o uso 

de reagentes químicos (Ge; Wadoux; Peng, 2022). Deste modo, se consolida como uma 

tecnologia eficiente, de baixo custo e ambientalmente sustentável. 

A análise do solo com espectroscopia é realizada nas faixas do visível (vis: 350-

750 nm), do infravermelho próximo (NIR: 750-1100 nm), do infravermelho de ondas curtas 

(SWIR: 1100-2500 nm) e do infravermelho médio (MIR: 2500-25000 nm ou 4000-400 cm
-1

) 

(Mendes et al., 2022). Nestas regiões, as assinaturas espectrais possuem relação direta com a 

composição e a estrutura molecular dos componentes do solo, o que torna possível identificar 

e quantificar os atributos pedológicos (Rizzo et al., 2021). 

Diante desse contexto, a espectroscopia se fortalece como ferramenta eficaz para 

caracterizar e auxiliar na classificação dos solos, e como técnica particularmente benéfica em 

países de grandes dimensões, como o Brasil, cuja demanda por levantamentos pedológicos em 

larga escala exige metodologias rápidas e de alta capacidade. O território brasileiro, por sua 

vez, abriga uma grande variedade de solos, sendo a região Nordeste um nítido exemplo desta 

diversidade pedológica. Esta região abriga diferentes biomas, destacando-se a Caatinga, o 
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único bioma exclusivamente brasileiro. Sob um clima semiárido e com forte exploração, os 

solos deste ecossistema são muito susceptíveis à degradação (Souza; Leite; Medeiros, 2021). 

A Caatinga hospeda desde solos muito intemperizados até pouco evoluídos, sendo 

comum a ocorrência de solos pouco profundos e com baixo desenvolvimento, formados 

principalmente por processos pedogenéticos de argiluviação, salinização e sodificação (Souza, 

et al., 2022). Todavia, do ponto de vista científico, esses solos são subexplorados. O uso da 

espectroscopia de reflectância em estudos pedológicos no semiárido brasileiro ainda é 

incipiente, sobretudo na faixa do infravermelho médio, cujo potencial para a predição de 

atributos é pouco investigado (Santos et al., 2020). Assim, persiste uma lacuna expressiva em 

estudos relativos à pedologia espectral, especialmente em ambientes semiáridos (Taghdis; 

Farpoor; Mahmoodabadi, 2022).  

Diante destes aspectos, a aplicação de técnicas espectrais em uma região com 

elevada heterogeneidade pedológica, como o Nordeste brasileiro, representa uma 

oportunidade estratégica de promoção da conservação do solo e de avanço metodológico. 

Neste sentido, parte-se da hipótese de que é possível discriminar ordens de solos baseado em 

espectros de reflectância nas faixas do visível ao infravermelho médio, uma vez que estes 

contêm feições espectrais associadas a atributos relevantes para a classificação pedológica. 

 

3.1.1. Objetivos 

 

O objetivo principal deste trabalho foi explorar o potencial dos espectros de 

reflectância vis-NIR-SWIR e MIR para caracterizar solos do Nordeste brasileiro quanto aos 

seus comportamentos espectrais, bem como identificar variações espectrais e similaridades 

dos perfis de solo pertencentes a diferentes classes. 

Como objetivos específicos foram almejados: 

 Realizar uma descrição qualitativa das características espectrais dos solos; 

 Determinar faixas espectrais com maior expressão para os atributos pedológicos; 

 Identificar grupos de solos com características espectrais semelhantes. 

 

3.2 Material e métodos 

 

Esta seção apresentará o banco de dados avaliado, a metodologia empregada para 

as análises dos solos e as técnicas estatísticas aplicadas visando à avaliação dos dados 

gerados. 
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3.2.1 Área de estudo e banco de dados do solo 

 

As amostras de solos utilizadas neste estudo compõe o Levantamento de 

reconhecimento de média intensidade dos solos do Estado do Ceará (2024), o qual reúne 

informações detalhadas dos perfis de solos analisados. Os solos integram a área 7 do estudo e 

são oriundos de 13 municípios do Ceará que estão situadas nas mesorregiões Noroeste 

Cearense, Norte Cearense e Metropolitana de Fortaleza (Figura 1).  

 

Figura 1 – Mapa da área de estudo localizada no estado do Ceará, Brasil 

 
Fonte: elaborada pela autora. 

 

Os solos foram coletadas na última etapa do Levantamento. No total, foram 

avaliadas 114 amostras correspondentes aos horizontes dos solos, provenientes de 24 perfis 

pedológicos, os quais representavam os solos de maior ocorrência no Nordeste. Estes perfis 

compreendem 9 ordens de solo e foram classificados até o quarto nível categórico do Sistema 

Brasileiro de Classificação do Solo (Santos et al., 2018), sendo esta etapa conduzida pela 

equipe responsável pela realização do Levantamento de solos. Posteriormente, os perfis foram 

reclassificados para o Sistema Brasileiro de Classificação do Solo (Santos et al., 2025), 

visando apresentar neste estudo a versão mais recente da classificação dos solos. 

Os materiais de solo avaliados foram adquiridos no acervo do Laboratório de 

Análises de Solos, Águas, Tecidos e Adubos - Convênio FUNCEME/UFC, localizado no 
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Departamento de Ciência do Solo da Universidade Federal do Ceará (UFC). As análises de 

química úmida foram realizadas pela equipe técnica do referido laboratório. Já as análises 

espectrais foram conduzidas pelos pesquisadores deste estudo. A faixa vis-NIR-SWIR foi 

avaliada no Laboratório de Geoprocessamento do Departamento de Engenharia Agrícola, 

enquanto a faixa MIR foi processada no Laboratório Multiaparelhos do Departamento de 

Ciência do Solo. Ambos os laboratórios situam-se no Campus Pici, UFC. 

Um resumo com as etapas metodológicas das análises realizadas neste estudo 

pode ser visualizado na Figura 2. O detalhamento de cada etapa será apresentado 

posteriormente na seção de metodologia das análises. 

 

Figura 2 - Fluxograma da metodologia de trabalho para as análises do solo 

 
 Fonte: elaborada pela autora. 

 

3.2.2 Análises laboratoriais úmidas 

 

Para iniciar as análises, as amostras de solo foram dispostas na sombra e ao ar 

para secagem, posteriormente foram destorroadas e tamisadas em peneira com malha de 

abertura de 2 mm, para obtenção da terra fina seca ao ar (TFSA). Após a aquisição da TFSA, 

as amostras foram avaliadas com a metodologia tradicional de química úmida e por 
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espectroscopia de reflectância. 

As análises tradicionais foram realizadas conforme a metodologia do Manual de 

Métodos de Análise de Solo da Embrapa (Teixeira et al., 2017), tendo sido avaliado 12 

atributos do solo. Para os atributos químicos, o carbono orgânico foi determinado por 

oxidação com dicromato de potássio; o nitrogênio total foi analisado pela oxidação com ácido 

sulfúrico; o cálcio e magnésio trocáveis foram extraídos com solução de KCl; o potássio e 

sódio trocáveis foram extraídos com Mehlich 1; o pH foi determinado em água, com relação 

solo-água de 1:2,5; a condutividade elétrica (CE) foi avaliada a partir da pasta de saturação do 

solo; e a percentagem de saturação por sódio (PST) foi calculada a partir dos valores de sódio 

e de capacidade de troca de cátions. 

Para os atributos físicos, a granulometria do solo (argila, silte e areia) foi 

determinada com o método da pipeta realizando a dispersão da amostra, seguida da separação 

das frações do solo por peneiramento e da sedimentação das partículas em meio líquido. 

 

3.2.3 Análise espectral 

 

Para realizar as análises espectrais do solo, as amostras de terra fina seca ao ar 

foram submetidas ao processo de secagem em estufa com circulação forçada de ar em 

temperatura de 45°C durante 24 horas, a fim de homogeneizar os efeitos da umidade do solo 

(Demattê et al., 2014). Os dados espectrais vis-NIR-SWIR e MIR foram obtidos por meio de 

metodologias distintas. 

As amostras de solo para leitura espectral na faixa vis-NIR-SWIR foram 

acondicionadas em recipiente de polipropileno preto, com 5 cm de diâmetro e 1,5 cm de 

altura. Os dados espectrais de reflectância bidirecional foram obtidos com o auxílio de uma 

sonda de contato (Hi-Brite Contact Probe) e de um espectrorradiômetro FieldSpec Pro FR 3 

(Analytical Spectral Devices, Boulder, Colorado, USA) (Figura 3). Esse equipamento realiza 

leituras na faixa do visível ao infravermelho de ondas curtas (350 – 2500 nm), com resolução 

espectral de 3 nm e 10 nm reamostrados para 1nm, e um campo de visão de 25°. 
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Figura 3 – Equipamento de aquisição dos dados espectrais vis-NIR-SWIR 

 
Fonte: A autora. 

 

Para a aquisição dos dados espectrais vis-NIR-SWIR foi realizada a calibração do 

sensor com uma placa branca (Spectralon), a qual é considerada como padrão de referência de 

100% de reflectância e é empregada no cálculo do fator de reflectância bidirecional (FRB). A 

calibração foi efetuada a cada 20 minutos por meio da leitura da placa padrão. Foram 

realizadas três leituras em diferentes pontos da superfície do material, de modo que a amostra 

foi girada aproximadamente 120° entre cada leitura para se obter uma boa representatividade. 

Com isso, cada amostra foi caracterizada pela média aritmética simples das três leituras. 

Para a leitura espectral na faixa MIR foi necessário efetuar uma etapa extra de 

preparo do solo visando obter partículas mais finas. Para tanto, antes da secagem das amostras 

em estufa foi realizada uma trituração adicional em almofariz de ágata. A leitura no 

infravermelho médio foi feita usando o infravermelho com transformada de Fourier FTIR 

Cary 630 (Agilent Technologies) equipado com c difusa (DRIFTS). O equipamento executa 

leituras espectrais na faixa MIR de 2500 a 15000 nm (4000 a 650 cm
-1

), com resolução 

espectral ≤ 2 cm
-1 

e
 
abriga internamente os componentes ópticos mais importantes, como o 

laser, fonte de luz e detector (Figura 4). 
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Figura 4 – Equipamento FTIR Cary 630 para aquisição de dados espectrais MIR 

 
Fonte: A autora. 

 

As amostras de solo foram lidas em triplicata para a obtenção de dados espectrais 

na faixa MIR, sendo a reflectância da amostra obtida pela média simples das três repetições. 

Para cada leitura foi utilizado aproximadamente 1 cm
3
 de solo, que foi colocado em um 

suporte próprio do acessório DRIFTS. Antes de cada medida foi efetuada a calibração do 

sensor, por meio da leitura da placa de referência que está posicionada na primeira posição do 

suporte. A referência consiste de um espelho dourado de reflectância difusa que auxilia na 

remoção da radiação de background do espectro (Figura 5). 

 

Figura 5 - Suporte do acessório DRIFTS com espelho de referência e amostras de solo 

 
  Fonte: A autora. 

 

Após a obtenção dos espectros, os dados de reflectância bruta foram submetidos 

ao pré-processamento de filtragem (suavização) Savitzky-Golay (SG), a fim de suavizar os 

ruídos do espectro (Savitzky; Golay, 1964). O emprego dessa técnica resultou na perda das 

cinco janelas iniciais e finais das faixas espectrais avaliadas, de modo que a região vis-NIR-



 
43 

SWIR apresentou 2141 feições e a faixa MIR exibiu 1788 feições. 

O comportamento espectral dos 24 perfis coletados, bem como cada horizonte do 

perfil, foi analisado individualmente. A análise foi realizada baseando-se na metodologia de 

interpretação morfológica do espectro de reflectância, descrita por Demattê et al. (2014). 

Nesse sentido, foram avaliados os seguintes critérios: intensidade da curva espectral, forma 

geral da curva ao longo do espectro, características de absorção e comparação das curvas 

entre horizontes do mesmo perfil pedológico. 

 

3.2.4 Análise estatística 

 

As análises estatísticas, o processamento espectral e a elaboração dos gráficos 

foram realizados no software R (R Core Team, 2024). A distribuição de frequência das classes 

pedológicas foi computada para determinar a proporção das ordens de solos estudadas. Em 

seguida, os resultados das análises físicas e químicas convencionais foram submetidos à 

estatística descritiva, avaliando-se os dados por classe de solos. 

Foi avaliada, também, a normalidade dos atributos por meio do teste de hipótese 

Shapiro-Wilk a 5%, e diante da não normalidade dos dados, aplicou-se a análise de correlação 

multivariada. A correlação foi realizada entre os atributos do solo e os valores de reflectância 

suavizados, visando avaliar a direção e a intensidade da interação entre os atributos estudados 

e as faixas espectrais.  

 

3.2.5 Análise de componentes principais e agrupamento dos dados espectrais 

 

A análise de componentes principais (ACP), com centro médio, foi aplicada nos 

dados espectrais vis-NIR-SWIR e MIR suavizados com o filtro SG. Essa análise foi realizada 

visando possibilitar a visualização de estruturas e padrões de distribuição dos dados e reduzir 

a dimensão dos dados no espaço multivariado para potencializar a análise de agrupamento. 

Para a análise de agrupamento dos dados espectrais foi empregado o algoritmo de 

classificação não supervisionada Fuzzy K-médias (FKM). Este algoritmo foi aplicado sobre 

os cinco primeiros escores resultantes da ACP, a fim de se obter o agrupamento das amostras 

de solo e de verificar a existência de padrões de aglomeração. A técnica FKM confere um 

grau de associação (pertinência) fuzzy para cada amostra, baseando-se na distância ao centro 

do cluster. Os graus de associações variam de 0 a 1 (Costa et al., 2022). 

O número adequado de clusters na análise de agrupamento foi determinado com 
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base nos índices coeficiente de partição e entropia de partição (Bezdek, 1974). Esses índices 

de validade usam somente a pertinência dos padrões ao cluster para obter seu valor, sendo 

desejado para o coeficiente de partição valor mais próximo a zero e para o de entropia mais 

próximo a um (Pal; Bezdek, 1995). Os grupos gerados tiveram seus atributos físico-químicos 

analisados com estatística descritiva. Esta estatística dos grupos associada à análise dos 

autovetores resultantes da ACP, apoiaram a compreensão dos agrupamentos formados. 

 

3.3 Resultados e discussão 

 

Nesta seção serão caracterizados os atributos físico-químicos do conjunto de solos 

avaliado e o comportamento espectral de todos os 24 perfis pedológicos coletados, bem como 

será discutido o agrupamento dos solos nas faixas espectrais vis-NIR-SWIR e MIR. 

 

3.3.1 Caracterização dos solos 

 

As classes dos solos estudadas, classificadas até o 4º nível categórico (subgrupo), 

bem como os locais de coleta das amostras, estão disponíveis no Apêndice A. Os 24 perfis de 

solos analisados corresponderam às seguintes classes, com suas respectivas taxas de 

ocorrência: Neossolos (R) e Argissolos (P), destacando-se com 25% das ocorrências cada um, 

Planossolos (S) com 16,6% de ocorrência, Cambissolos (C) e Luvissolos (T) representando 

8,3% cada, e Gleissolos (G), Latossolos (L), Plintossolos (F) e Vertissolos (V) 

corresponderam a 4,2% cada (Figura 6a). Quanto à subordem (Figura 6b), sobressaíram-se os 

Neossolos Flúvicos e Planossolos Nátricos. 
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Figura 6 – Análise da a) distribuição de frequência das ordens e b) subordens de solo 

 
CX: Cambissolo Háplico; FT: Plintossolo Argilúvico; GZ: Gleissolo Sálico; LA: Latossolo Amarelo; 

PA: Argissolo Amarelo; PAC: Argissolo Acinzentado; PV: Argissolo Vermelho; PVA: Argissolo 

Vermelho-Amarelo; RL: Neossolo Litólico; RQ: Neossolo Quartzarênico; RY: Neosslo Flúvico; SN: 

Planossolo Nátrico; SX: Planossolo Háplico; TC: Luvissolo Crômico; TX: Luvissolo Háplico; VE: 

Vertissolo Ebânico.       

Fonte: A autora. 

 

No contexto estadual, Neossolos e Argissolos são as duas principais classes de 

solos do Ceará (Levantamento de reconhecimento de média intensidade dos solos do Estado 

do Ceará, 2024). Já para a região Nordeste, as classes dominantes em ordem decrescente de 

ocorrência são os Latossolos, Neossolos, Argissolos, Planossolos, Luvissolos, Plintossolos, 

Cambissolos e Gleissolos (Souza; Leite; Medeiros, 2021). Tais dados destacam a diversidade 

edáfica da região, marcada por solos em diferentes estágios de desenvolvimento, e reforçam a 

relevância desse estudo ao contribuir para a caracterização espectral dos principais solos. 

A análise estatística da granulometria dos solos (Apêndice B), considerando os 

valores médios, evidenciou que o Neossolo apresentou textura arenosa, enquanto as demais 

classes se enquadraram no grupamento textural média (Santos et al., 2025). Para os 

macronutrientes, com base nos valores máximos, as concentrações mais elevadas para Ca e 

Mg (> 9 cmolc kg-¹) ocorreram no Gleissolo, Luvissolo e Planossolo, e os teores mais altos de 

N (> 3 g kg-¹) aconteceram no Argissolo, Cambissolo e Luvissolo. 

Quanto ao CO, as maiores concentrações (> 10 g kg-¹) foram observadas nos 

Argissolo, Cambissolo, Luvissolo e Plintossolo. No semiárido, os maiores teores de COT 
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(12,3 g kg-¹) são geralmente reportados em Cambissolos e Vertissolos (Souza; Leite; 

Medeiros, 2021). Contudo, o presente estudo avaliou apenas um perfil de Vertissolo, o qual 

apresentou baixo CO, contrastando a tendência regional. 

O pH dos solos variou de fortemente ácido, com valor mínimo de 3,9 no 

Cambissolo, a moderadamente alcalino, atingindo 8,2 no Vertissolo. Em solos alcalinos, a 

elevada saturação por cátions básicos e/ou o acúmulo de sais é comumente observada, 

sobretudo em ambientes de várzeas com ocorrência de solos salinos (Araújo Filho et al., 

2022). Essa condição foi verificada no Vertissolo estudado, que apresentou, além de 

alcalinidade, alta concentração do cátion sódio e elevada condutividade elétrica. 

No que se refere às características de salinidade e sodicidade do solo, foram 

avaliados os valores de condutividade elétrica (CE) e porcentagem de saturação por sódio 

(PST), empregados para identificar os solos afetados por sais e classifica-los em três 

categorias: salinos - CE > 4 dS m
-1

 e PST < 15%; sódicos - CE < 4 dS m
-1

 e PST > 15%; e 

salino‐sódicos - CE > 4 dS m
-1

 e PST > 15% (FAO, 2024). Com base nos valores máximos 

observados, o Gleissolo, Neossolo e Vertissolo foram enquadrados como salino-sódicos e os 

Planossolos foram classificados como sódicos. 

Os resultados obtidos evidenciam que a sodicidade representa um grave problema 

para os solos do Nordeste brasileiro. O excesso de sódio trocável no solo ocasiona baixa 

estabilidade estrutural, permeabilidade reduzida e fraca aeração, além de favorecer a formação 

de crostas superficiais, fatores que limitam o crescimento radicular e o desenvolvimento das 

culturas (Hailu; Mehari, 2021). O acúmulo de sais nos solos dessa região compromete a 

sustentabilidade da produção agrícola local. 

 

3.3.2 Correlação entre atributos do solo e faixas espectrais  

 

A correlação de Spearman (ρ) foi utilizada devido a não normalidade dos dados. 

Esta análise mede a intensidade e a direção da relação entre duas variáveis, e é representada 

por um coeficiente que varia de -1 a +1. Coeficientes positivos (ρ > 0) indicam relação direta, 

enquanto valores negativos (ρ < 0) refletem relação inversa. A interpretação da magnitude das 

relações é feita em classes, conforme Mukaka (2012): coeficientes entre 0 e 0,3 (0 a -0,3) são 

considerados desprezíveis; entre 0,30 a 0,5 (-0,30 a -0,5), são baixos; entre 0,50 e 0,7 (-0,50 a 

-0,7), moderados; entre 0,70 e 0,9 (-0,7 a 0,9), altos; e > 0,9 (maior que -0,9), muito altos. 

A análise de correlação de Spearman entre os atributos do solo e os dados 

espectrais vis-NIR-SWIR suavizados com o filtro SG evidenciou a predominância de relações 
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inversas, com exceção da areia, e amplitudes variando de desprezíveis a fracas (Figura 7). 

 

Figura 7 – Correlação multivariada entre atributos do solo e a faixa espectral vis-NIR-SWIR 

 
Fonte: A autora. 

 

Entre os atributos físicos, a areia foi a única variável positivamente correlacionada 

com a reflectância, com destaque para as faixas 1898-1923 nm e 2220-2495 nm (ρ de 0,40 a 

0,45), que apresentaram as correlações mais fortes, promovendo o aumento da reflectância. 

Em contrapartida, a argila e o silte exibiram correlações negativas ao longo do espectro. O 

silte exibiu os maiores coeficientes nas faixas 355-379 nm e 775-929 nm (ρ entre -0,40 e -

0,43), enquanto a argila destacou-se na região de 2142-2495 nm (ρ entre -0,51 e -0,65). 

A correlação positiva entre a areia e o espectro vis-NIR-SWIR decorre da composição 

desta fração do solo, constituída predominantemente por quartzo, um mineral transparente que 

não absorve energia e contribui para o aumento da intensidade de reflectância global (albedo) 

(Terra et al., 2021). Por outro lado, a correlação inversa entre a argila e o comportamento 

espectral evidencia que maiores concentrações desta fração reduzem a reflectância do solo, 

favorecendo a ocorrência de feições de absorção. Este efeito está relacionado à mineralogia da 

argila, composta principalmente por minerais que apresentam absorção na região SWIR, 

como a caulinita, por exemplo (Madeira Netto; Baptista, 2000). 
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Com relação aos atributos químicos, o sódio (Na) destacou-se nas faixas de 1398-

1404 nm, 1419-1441 nm e 1880-2003 nm (ρ de -0,51 a -0,56), já a PST se destacou em 1346-

1433 nm, 1547-1563 nm e 1643-1891 nm (ρ de -0,35 a -0,38). O pH apresentou associação 

mais forte na região de 905-1284 nm (ρ de -0,35 a -0,40), enquanto a CE exibiu os maiores 

coeficientes em 640-834 nm (ρ de -0,50 a -0,51). O carbono orgânico (C) apresentou as 

correlações mais expressivas na faixa 524-664 nm (ρ de -0,40 e -0,43). A presença de matéria 

orgânica no solo é reconhecida como um importante atributo para caracterização espectral, 

apresentando maior correlação com a reflectância do visível (Meneses; Almeida; Baptista, 

2019), o que reforça os resultados obtidos. 

Quanto aos macronutrientes, o nitrogênio (N) e potássio (K) apresentaram 

correlações de baixa magnitude. O N exibiu tanto relações positivas quanto negativas, 

contudo foram consideradas insignificantes tendo o maior valor ocorrido em 531-556 nm (ρ = 

-0,29), enquanto o K mostrou fraca associação, apresentando o maior valor em 433-447 nm (ρ 

= -0,31). O cálcio (Ca) exibiu correlações moderadas nas faixas 355-591 nm e 677-1125 nm 

(ρ de -0,51 a -0,64), e o magnésio (Mg) obteve maior correlação em 355-466 nm, 669-1150 

nm e 1897-1927 nm (ρ de -0,40 a -0,48). 

Os atributos químicos, com exceção do carbono orgânico, não alteram 

diretamente o espectro do solo, sendo considerados propriedades de segunda ordem. No 

entanto, tais atributos encontram-se adsorvidos ou dependem de grupos funcionais de 

compostos minerais e orgânicos (Terra et al., 2021), o que possibilita a sua análise indireta por 

meio da interação com os atributos de primeira ordem. 

Na análise de correlação de Spearman entre os dados espectrais MIR suavizados e 

os atributos do solo, observaram-se, de forma geral, relações tanto diretas quanto inversas, 

com magnitudes mais expressivas do que as relações verificadas na faixa vis-NIR-SWIR 

(Figura 8). 
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Figura 8 – Correlação multivariada entre atributos do solo e a faixa espectral MIR 

 
        Fonte: A autora. 

 

Os atributos físicos apresentaram altas correlações. A areia exibiu associações 

positivas fortes nas faixas 3583-3198 cm
-1

, 1269-1060 cm
-1

 e 806-751 cm
-1

 (ρ = 0,71 a 0,92), 

enquanto as correlações negativas mais intensas ocorreram em 1802-1770 cm
-1

 e 1597-1332 

cm
-1

 (ρ = -0,71 a -0,77). O silte destacou-se em 2035-1777 cm
-1

 e 1530-1315 cm
-1

 (ρ = 0,71 a 

0,77), além da região 1250-1133 cm
-1

 (ρ = -0,71 a -0,77). A argila, por sua vez, exibiu os 

coeficientes mais elevados nas regiões 3990-3883 cm
-1

, 3675-3669 cm
-1

, 3637-3628 cm
-1

, 

3621-3404 cm
-1

, 3391-3373 cm
-1

, 3273-3063 cm
-1

, 1256-1058 cm
-1

, 993-890 cm
-1

 e 808-743 

cm
-1

 (ρ = -0,71 a -0,85), além das faixas 1794-1768 cm
-1

 e 1600-1334 cm
-1

 (ρ = 0,51 a 0,57). 

Diferentemente do observado na faixa vis-NIR-SWIR, a fração areia apresentou 

correlações negativas na região MIR. Essa relação inversa promove absorções e está 

associada à presença de sílica, a qual possui bandas de absorção apenas no MIR. Nos solos, a 

sílica está presente no quartzo que compõe a areia e nos argilominerais filossilicatos que 

constituem a fração argila, promovendo absorções nessas partículas (Terra et al., 2021). 

Em relação aos atributos químicos, o carbono apresentou correlações negativas 

mais intensas em 2946-2838 cm
-1

 e 1837-1818 cm
-1

 (ρ = -0,35 a -0,41), e positivas em 1313-

1285 cm
-1

 (ρ = 0,40 a 0,48). O sódio exibiu os maiores valores nas faixas 3600-3173 cm
-1

, 
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1272-1075 cm
-1

 e 805-762 cm
-1

 (ρ = -0,51 a -0,66), além da região 1599-1323 cm
-1

 (ρ = 0,51 

a 0,59). O pH destacou-se em 820-810 cm
-1

 (ρ = 0,40 a 0,47) e em 1263-1230 cm
-1

 (ρ = -0,31 

a -0,33). A PST exibiu as maiores correlações nas faixas 3615-3561 cm
-1

, 1284-1252 cm
-1

 e 

780-773 cm
-1

 (ρ = -0,35 a -0,39) e em 1563-1554 cm
-1

 (ρ = 0,35). Já a CE, apresentou 

correlação mais elevada em 1397-1300 cm
-1

 (ρ = 0,31 a 0,37). 

Quanto aos macronutrientes, o N obteve maior correlação em 1302-1280 cm
-1

 (ρ 

= 0,35 a 0,40). O K apresentou correlações positivas em 2048-1779 cm
-1

, 1487-1483 cm
-1

 e 

1388-1313 cm
-1

 (ρ = 0,51 a 0,57), enquanto em 1243-1213 cm
-1

 foram observados maior 

correlação negativa (ρ = -0,50 e -0,51). O Ca apresentou relações mais intensas em 3417-3153 

cm
-1

 e 1252-1136 cm
-1

 (ρ = -0,51 a -0,56), além de 1401-1289 cm
-1

 (ρ = 0,51 a 0,64). O Mg 

exibiu os maiores coeficientes nas faixas 3509-3503 cm
-1

, 3486-3171 cm
-1

, 1265-1127 cm
-1

 e 

786-769 cm
-1

 (ρ = -0,51 a -0,63), além de 1889-1867 cm
-1

 e 1500-1304 cm
-1

 (ρ = 0,51 a 0,66). 

De modo geral, os coeficientes de correlação produzidos na faixa MIR foram 

superiores aos obtidos na região vis-NIR-SWIR. A exceção foi os coeficientes da CE e do Ca. 

As correlações fortes entre os atributos e a energia eletromagnética do MIR, decorrem das 

vibrações moleculares fundamentais desta região, as quais refletem os componentes minerais 

e orgânicos dos solos (Dangal et al., 2019). Este tipo de interação da energia do MIR permite 

a melhor caracterização dos atributos, sobretudo daqueles que alteram o espectro do solo, 

como a granulometria e o carbono orgânico. 

 

3.3.3 Comportamento espectral das classes de solos 

 

3.3.3.1 Argissolo 

 

Todos os seis perfis de Argissolo avaliados apresentaram alta intensidade de 

reflectância na faixa vis-NIR-SWIR, com valores superiores a 0,70, o que evidencia a forte 

contribuição da fração areia no albedo. A morfologia espectral foi semelhante entre os perfis, 

tendo a curva espectral exibido inicialmente forma ascendente, seguida de um trecho plano e, 

a partir de 2000 nm, leve tendência descendente. Observaram-se diferenças na intensidade de 

reflectância entre os horizontes superficiais e subsuperficiais, atribuídas principalmente à 

influência da matéria orgânica e às variações granulométricas entre os horizontes.  

A redução do teor de areia e o aumento de argila entre os horizontes superficial e 

subsuperficial é uma característica típica de Argissolos (Santos et al., 2025). Essa 

diferenciação textural entre horizontes resulta da atuação de diferentes processos 
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pedogenéticos, como a argiluviação (lessivagem) e a elutriação. Na argiluviação, ocorre a 

movimentação das partículas finas da fração argila, com a eluviação dos horizontes 

superficiais e o consequente enriquecimento dos horizontes subsuperficiais pela iluviação da 

argila. Já na elutriação, o material fino é removido do horizonte superficial em função do 

escoamento superficial, promovendo um gradiente textural no solo (Kämpf; Curi, 2012). 

A diferença textural entre os horizontes de Argissolos foi adequadamente captada 

pela espectroscopia de reflectância, uma vez que os horizontes B texturais apresentaram 

feições espectrais típicas de minerais de argila com absorções bem pronunciadas. Em 

contraste, o horizonte superficial exibiu maior reflectância na região do SWIR e picos 

acentuados na faixa do MIR, em decorrência do seu alto teor de areia. 

O maior conteúdo de matéria orgânica nos horizontes superficiais A promoveu, na 

faixa vis-NIR-SWIR, menor intensidade de reflectância, além do mascaramento das feições 

associadas aos óxidos de ferro. Estes óxidos ocorrem em menor quantidade nesses horizontes 

em virtude da migração de partículas finas a partir do horizonte superficial, processo 

associado à lessivagem (Kämpf; Curi, 2012). Por outro lado, o maior teor de areia, em relação 

aos horizontes subsuperficiais, favoreceu o aumento da reflectância a partir de 2100 nm, 

promovendo inversão das curvas. Nos horizontes B texturais, observaram-se absorções típicas 

dos óxidos de ferro em torno de 435-530 nm e 885-950 nm, sendo esta última feição 

caracterizada pelo aspecto côncavo na curva espectral (Madeira Netto; Baptista, 2000). 

Na região do MIR, os perfis não apresentaram grandes distinções na intensidade 

geral de reflectância, mas, semelhante ao vis-NIR-SWIR, foi verificada diferenças entre os 

horizontes. As feições de absorção associadas ao CO, centradas em 2924-2843 cm
-1 

(Mendes 

et al., 2022), foram mais evidentes nos horizontes superficiais, que têm maior conteúdo de 

matéria orgânica. De modo geral, nos horizontes B texturais ocorreu redução da energia 

refletida nas regiões de 3695-2750 cm
-1 

e 1250-1000 cm
-1

, atribuída ao maior conteúdo de 

argila desses horizontes. 

A análise do comportamento espectral do perfil 5 (Figura 9) revelou 

predominância de goethita, caracterizado por maior intensidade de reflectância no início do 

espectro vis. A hematita e a goethita são os óxidos de ferro mais encontrados nos solos 

tropicais (Meneses; Almeida; Baptista, 2019). Observaram-se absorções em 1400 e 1900 nm 

com a presença de um ombro à esquerda das feições, indicando ocorrência da caulinita, 

enquanto as absorções em 2346 e 2440 nm foram atribuídas às micas (Demattê et al., 2014; 

Meneses; Almeida; Baptista, 2019). 

Na faixa MIR, a reflectância exibiu padrão abrupto de queda no início do 
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espectro, especialmente nos horizontes superficiais que possuem elevado teor de areia e 

presença de quartzo na composição, o qual possui forte absorção nesta região do espectro. 

Nestes horizontes foram observadas, também, feições associadas ao CO, tendo ocorrido altos 

picos de reflectância a partir de 1250 cm
-1

, os quais são atribuídos ao quartzo (Mendes et al., 

2022). 

 

Figura 9 – Comportamento espectral de perfil 5: ARGISSOLO ACINZENTADO Eutrófico 

típico 

 
Fonte: A autora. 

 

Nos perfis 6 e 9, a análise do comportamento espectral também evidenciou a 

predominância de goethita, em concordância com a cor amarelada desses solos. As feições 

atribuídas a caulinita em 1400 e 2200 nm foram bem definidas, enquanto as absorções 

associadas às micas foram observadas no final do espectro vis-NIR-SWIR. No MIR, a porção 

inicial do espectro revelou um padrão abrupto de reflectância nos horizontes superficiais pelo 

alto teor de quartzo.  

O perfil 6 (Figura 10) apresentou variações entre os espectros dos horizontes, com 

o horizonte An exibindo a menor reflectância de 3250-2100 cm
-1

 e uma forte absorção em 
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2250 cm
-1

, sendo esta feição de absorção associada a sílica presente no quartzo ou nos 

filossilicatos (Mendes et al., 2022). 

 

Figura 10 – Comportamento espectral de perfil 6: ARGISSOLO AMARELO Distrófico típico 

 
Fonte: A autora. 

 

No perfil 9 (Figura 11), as absorções dos filossilicatos entre 3700-3600 cm
-1 

foram 

mais evidentes, sugerindo maior ocorrência de caulinita (Di Raimo et al., 2022). 
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Figura 11 – Comportamento espectral de perfil 9: ARGISSOLO AMARELO Distrocoeso 

solódico 

 
Fonte: A autora. 

 

A análise do comportamento espectral dos perfis 12, 18 e 19 evidenciou a 

predominância do óxido de Fe hematita, indicada pela menor intensidade de reflectância no 

início do espectro visível. Foram observadas absorções associadas à caulinita e às micas na 

região SWIR. As feições atribuídas aos óxidos e aos argilomonerais 1:1 foram mais 

pronunciadas nos horizontes subsuperficiais, evidenciando a importância de se realizar análise 

espectral em horizontes diagnósticos, os quais exibem características fundamentais para a 

classificação do solo. As feições dos minerais observados confirmam as características dos 

Argissolos, solos considerados em estágio intermediário de evolução (Santos et al., 2025).  

Embora os perfis 12 e 18 possuam a mesma classificação pedológica, seus 

horizontes apresentaram distinções no comportamento espectral da faixa MIR, possivelmente 

relacionadas a diferenças no material de origem, uma vez que os solos se formaram em áreas 

distintas. O perfil 12 (Figura 12) apresentou diferenças de intensidade entre os horizontes, as 

feições de absorção dos filossilicatos foram mais nítidas, e ocorreram pequenos picos em 

1780-1500 cm
-1

, indicando maior predominância de caulinita.  
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Figura 12 – Comportamento espectral de perfil 12: ARGISSOLO VERMELHO-AMARELO 

Distrófico arênico 

 
Fonte: A autora 

 

Em contraste, no perfil 18 (Figura 13) as absorções do quartzo em 2000-1750 cm
-1

 

foram suaves e os picos em 1250-1000 cm
-1 

foram menos intensos, sugerindo menor teor de 

quartzo que no perfil 12.  
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Figura 13 – Comportamento espectral de perfil 18: ARGISSOLO VERMELHO-AMARELO 

Distrófico arênico 

 
Fonte: A autora 

 

O perfil 19 (Figura 14), por sua vez, apresentou o maior fator de reflectância entre 

todos os perfis de Argissolos avaliados. Na faixa MIR, as feições de absorção atribuídas ao 

CO em 2924-2843 cm
-1

 foram muito suaves. Por outro lado, observou-se a ocorrência de um 

pico em 916 cm
-1

, associada à hematita oriunda da desidroxilação da goethita (Ruan et al., 

2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
57 

Figura 14 – Comportamento espectral de perfil 19: ARGISSOLO VERMELHO Distrófico 

nitossólico 

 
Fonte: A autora 

 

3.3.3.2 Cambissolo 

 

Os dois perfis de Cambissolo avaliados apresentaram elevado albedo na faixa vis-

NIR-SWIR, com fator de reflectância superior a 0,75, o que evidencia a forte contribuição da 

granulometria para o aumento da reflectância. A morfologia espectral seguiu padrão 

semelhante entre os perfis, caracterizado por curvas inicialmente ascendentes, seguidas por 

trecho com tendência plana.  

Foram observadas diferenças na intensidade de reflectância entre os horizontes, 

atribuídas principalmente à influência da matéria orgânica e à granulometria. As feições dos 

óxidos de ferro presentes na faixa vis-NIR indicaram predominância de hematita, com banda 

de absorção mais estreita em torno de 950 nm. Estas feições foram observadas apenas nos 

horizontes subsuperficiais, os quais não sofrem mascaramento pela matéria orgânica, o que 

ratifica a importância destes horizontes para auxiliar na classificação dos solos. 

No MIR, também foram verificadas diferenças na intensidade de reflectância entre 

os horizontes em algumas regiões. Embora os horizontes superficiais tenham apresentado 
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teores elevados de CO (> 10 g kg
-1

), suas feições de absorção centradas entre 2924-2843 cm
-1 

(Mendes et al., 2022), foram suaves. Já os picos de quartzo, entre 1200-1000 cm
-1

, exibiram 

baixa intensidade e ausência de diferenças expressiva entre horizontes. Estes aspectos 

sugerem menor teor de quartzo e poucas variações texturais, o que é típico de Cambissolos, 

que são caracterizados pelo baixo desenvolvimento pedogenético (Santos et al., 2025). 

O comportamento espectral do perfil 11 (Figura 15) apresentou feições de 

absorção típicas de caulinita e micas na faixa NIR-SWIR, com inversão da curva em 2350 

nm, decorrente do aumento da reflectância no horizonte A1, em virtude do maior teor da 

fração areia em relação aos demais horizontes. Embora os Cambissolos apresentem, 

normalmente, teores uniformes de argila ou pequenos incrementos (Santos et al., 2025), esta 

leve diferença de textura pôde ser capturada pela análise espectral, que evidenciou variações 

na reflectância entre os horizontes. 

Na faixa MIR, observaram-se feições atribuídas à caulinita, com absorções entre 

3700-3600 cm
-1

, além de pequenas variações na intensidade de reflectância entre os 

horizontes na região de 3000-2000 cm
-1

. Essas diferenças podem estar associadas a 

incrementos sutis no teor de argila dos horizontes (Di Raimo et al., 2022). 

 

Figura 15 – Comportamento espectral de perfil 11: CAMBISSOLO HÁPLICO Tb Eutrófico 

típico 

 
Fonte: A autora 
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Em contraste, o perfil 20 (Figura 16) não apresentou inversão da curva. Todavia, 

as feições bem marcadas em 1400 e 2200 nm indicaram a prevalência de caulinita, o que foi 

corroborado no MIR pelas absorções dos filossilicatos no início do espectro e pelo pico em 

1500 cm
-1

, enquanto as feições em 1900 e 2346 nm sugeriram a ocorrência de argilominerais 

2:1. Os horizontes subsuperficiais exibiram elevada reflectância, comportamento 

característico dos Cambissolos, cujo maior teor de silte, sobretudo nos horizontes 

subsuperficiais, associado ao baixo desenvolvimento pedogenético e a presença de 

argilominerais 2:1, favorece a alta reflectância (Bellinaso; Demattê; Romeiro, 2010).  

A curva do horizonte Bi1 destacou-se pela reflectância superior em todas as 

faixas, atribuído ao seu maior teor de areia. Observaram-se diferenças no seu comportamento 

entre 2750 e 1400 cm
-1

, em relação aos demais horizontes, associadas a variações na 

granulometria e no teor de CO. Este horizonte representa a zona de maior transformação 

pedogenética do perfil, enquanto o horizonte subsequente, por ser mais profundo, pode conter 

minerais primários com assinaturas espectrais distintas. 

O horizonte Bi1 apresentou maior teor de areia e redução na concentração de CO, 

em comparação ao horizonte A, o que favoreceu a sua alta reflectância. O predomínio da 

fração areia tende a reduzir a superfície específica das partículas, permitindo que o CO, 

mesmo com baixos teores, exerça maior influência sobre o espectro (Di Raimo et al., 2022). 

Assim, as absorções nessa região correspondem à combinação das bandas de CO e de H2O 

com as dos minerais, sendo as feições presentes entre 1725 e 1530 cm
-1

 atribuídas aos ácidos 

carboxílicos e proteínas da matéria orgânica (Rossel et al., 2008). 
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Figura 16 – Comportamento espectral de perfil 20: CAMBISSOLO HÁPLICO Tb Distrófico 

saprolítico 

 
Fonte: A autora. 

 

3.3.3.3 Gleissolo 

 

O perfil de Gleissolo analisado apresentou alta reflectância, com intensidade 

máxima de 0,72 (Figura 17). A morfologia espectral foi caracterizada por comportamento 

inicialmente ascendente, seguindo de um trecho mais plano a partir de 1450 nm. Foram 

observadas diferenças na intensidade de reflectância entre os horizontes superficiais e 

subsuperficiais. De forma similar ao verificado no Cambissolo, os horizontes subsuperficiais 

deste perfil apresentaram alta reflectância em razão do elevado conteúdo de silte, que é 

característico de solos com baixo desenvolvimento, associado ao maior teor de areia.  

Na faixa vis-NIR-SWIR, os horizontes subsuperficiais exibiram curva com 

concavidade suave entre 900 e 950 nm, indicando ocorrência de óxidos de ferro em pequena 

quantidade. Embora o ferro seja um elemento característico dos Gleissolos, nestes solos ele 

ocorre principalmente na forma reduzida, a qual não possui feições típicas. O predomínio do 

ferro reduzido decorre da preponderância do processo de gleização, que ocorre pela saturação 

do solo com água, que estabelece condições anaeróbias e promove a redução do Fe, originado 

uma matriz de cor cinzenta, com ocorrência ocasional de mosqueados ou concreções de Fe e 
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Mn (Kämpf; Curi, 2012).  

Ainda na faixa vis-NIR-SWIR, observaram-se feições relacionadas aos 

argilominerais, indicando predominância de minerais do tipo 2:1, evidenciada pelas absorções 

mais suaves em 1400 e 2200 nm e pela feição em 1900 nm, profunda e com aspecto em “V”. 

Além disso, verificaram-se feições entre 2261-2440 nm associadas às micas e aos carbonatos 

(Meneses; Almeida; Baptista, 2019), corroboradas pelos maiores teores de Ca e Mg no perfil. 

Em contraste com os carbonatos, as características de salinidade e sodicidade deste perfil não 

puderam ser identificadas, uma vez que os sais solúveis não alteram o espectro. 

A presença de carbonatos é típica de ambientes com baixo intemperismo químico, 

como os solos do semiárido, que preservam características do material de origem e 

frequentemente se formam a partir de rochas sedimentares (Araújo Filho et al., 2022). No 

contexto do Ceará, a ocorrência destes minerais nos Gleissolos é particularmente favorecida 

pelo material de origem, depósitos aluvionares e litorâneos (Levantamento de reconhecimento 

de média intensidade dos solos do Estado do Ceará, 2024). É importante destacar que a 

dinâmica do ambiente de formação desse solo, o qual é formado principalmente por 

sedimentos sob condições de hidromorfia (Santos et al., 2025), associado a influência de água 

salgada, cria condições propicias para gênese de solos salino-sódicos. 

De modo oposto, na faixa do MIR não foram observadas feições associadas a 

carbonatos. O comportamento espectral apresentou variações sutis na intensidade de 

reflectância entre os horizontes, principalmente na região de 3000-2250 cm
-1

, atribuídas a 

diferenças na granulometria. Os maiores teores de areia nos horizontes subsuperficiais 

promoveram maior reflectância nesta região e também entre 1200-1000 cm
-1

, em função da 

maior presença de quartzo. Foram verificadas ainda feições de absorção suaves dos 

filossilicatos em 3695-3622 cm
-1 

e do CO em 2924 cm
-1

, além de uma absorção com aspecto 

mais largo e profundo em torno de 1624 cm
-1

, atribuída a combinação das bandas de CO e de 

H2O, resultante da influência conjunta da matéria orgânica e da água.  
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Figura 17 – Comportamento espectral de perfil 8: GLEISSOLO SÁLICO Sódico típico 

 
Fonte: A autora. 

 

3.3.3.4 Latossolo 

 

O perfil de Latossolo apresentou alta reflectância, com intensidade máxima de 

0,77 na região vis-NIR-SWIR (Figura 18). A morfologia espectral exibiu aspecto inicialmente 

ascendente, seguido de um trecho plano e, a partir de 2100 nm, tendência levemente 

descendente. O comportamento espectral foi semelhante entre os horizontes na faixa vis-NIR-

SWIR, refletindo a granulometria mais uniforme, enquanto no MIR ocorreram diferenças. Na 

região SWIR ocorreu inversão das curvas, com o horizonte A apresentando maior reflectância. 

Embora os Latossolos exibam pouca diferenciação de sub-horizontes, pode ocorrer pequeno 

incremento de argila no horizonte B latossólico com a profundidade (Santos et al., 2025). 

Na faixa vis-NIR-SWIR, observaram-se feições típicas de óxidos e argilominerais 

do tipo 1:1. Na curva espectral, a concavidade mais larga entre 900-1000 nm sugere a 

predominância de goethita, o que está em concordância com a coloração do perfil, enquanto a 

absorção em 2265 nm está associada à ocorrência de gibbsita (Meneses; Almeida; Baptista, 

2019). Também foram verificadas absorções atribuídas à caulinita, evidenciadas pelo ombro à 

esquerda nas feições em 1400 e 2200 nm. A ocorrência concomitante de óxidos e 
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argilominerais 1:1 neste perfil, evidencia o avançado desenvolvimento pedogenético dos 

Latossolos. 

Os Latossolos se caracterizam pelo alto grau de intemperismo, concentrando 

argilominerais mais resistentes e óxidos de Fe e Al, de modo que o predomínio de minerais 

secundários favorece o acúmulo de caulinita e gibbsita (Santos et al., 2025). Neste solo, 

predomina o processo pedogenético de ferralitização, que resulta na remoção da sílica 

(dessilicação), na formação de caulinita e na concentração de óxidos de Fe e Al, evidenciando 

a forte atuação do intemperismo químico (Kämpf; Curi, 2012). Estas características do 

processo pedogenético puderam ser verificadas na análise espectral, manifestando-se de forma 

mais intensa nos horizontes subsuperficiais, os quais são diagnósticos para identificar esta 

classe do solo.  

Na região do MIR, as feições de absorção do CO em 2924 cm
-1

 foram pouco 

expressivas, possivelmente mascaradas pelo maior conteúdo de óxidos. Foram observadas 

absorções entre 3695-3390 cm
-1

, características de filossilicatos e gibbsita, além de feições 

acentuadas de quartzo, com absorção em 2230 cm
-1 

e picos de reflectância entre 1200-1000 

cm
-1 

(Mendes et al., 2022), corroborando o elevado conteúdo de areia do perfil. Por outro 

lado, os horizontes subsuperficiais apresentaram pequeno acúmulo de argila, destacando-se o 

horizonte Bw1, que exibiu alta reflectância e comportamento distinto dos demais horizontes 

na faixa de 2500-1250 cm
-1

. 

O horizonte Bw1 é a zona de maior atuação pedogenética. As variações espectrais 

observadas neste horizonte podem ser atribuídas a mudanças na granulometria e no conteúdo 

de CO, visto que, em relação ao horizonte antecedente, houve redução dos teores de areia e de 

CO e incremento de argila. A variação destes atributos tornou mais pronunciada as feições dos 

minerais entre 2000-1500 cm
-1

, sendo que na região entre 1725-1530 cm
-1

 ocorrem 

importantes absorções de CO (Rossel et al., 2008). Assim, de modo similar ao perfil 20 de 

Cambissolo, as feições verificadas nessa região, possivelmente, são a combinação das bandas 

de CO e de H2O junto aos minerais oriundos do acúmulo de argila, prevalecendo neste caso os 

minerais secundários. 
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Figura 18 – Comportamento espectral de perfil 14: LATOSSOLO AMARELO Distrófico 

psamítico 

 
Fonte: A autora. 

 

3.3.3.5 Luvissolo 

 

Os dois perfis de Luvissolo avaliados apresentaram elevado albedo, com fator de 

reflectância > 0,69. O comportamento e a morfologia espectral exibiram padrão semelhante 

entre os perfis, caracterizado por curva com forma inicialmente ascendente, seguida de um 

trecho plano e, a partir de 2000 nm, ocorreu leve tendência descendente. Foram observadas 

diferenças na intensidade de reflectância entre os horizontes, atribuídas à influência da 

matéria orgânica e às variações granulométricas. 

De modo semelhante aos Argissolos, a diferenciação textural dos Luvissolos 

resulta do processo pedogenético de elutriação, no qual ocorre a remoção superficial da argila 

por erosão, e do processo de argiluviação, que promove a migração da argila dos horizontes 

superficiais e o consequente acúmulo nos subsuperficiais, (Kämpf; Curi, 2012). Todavia, 

embora esta classe apresente contraste textural com incremento de argila em profundidade, há 

expressiva presença de argilominerais do tipo 2:1 (Santos et al., 2025), o que a diferencia dos 

Argissolos e evidencia o estádio intermediário de desenvolvimento. A análise espectral 
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identificou tais aspectos texturais e mineralógicos, sobretudo nos horizontes subsuperficiais, 

que são diagnósticos para classificação do solo. 

Na faixa vis-NIR-SWIR, o comportamento espectral dos perfis exibiu feições 

associadas aos óxidos de ferro, indicando predomínio de hematita, devido à baixa intensidade 

de reflectância no início do espectro. Observaram-se ainda no SWIR, absorções mais 

pronunciadas e profundas em 1900 nm, indicativas do predomínio de argilomimerais 2:1. 

Entre 2261-2440 nm, foram identificadas absorções atribuídas aos carbonatos e as micas 

(Meneses; Almeida; Baptista, 2019), coincidindo com o menor desenvolvimento desse solo.  

Nos Luvissolos, é comum a alta saturação por bases e a presença de minerais 

menos intemperizados (Santos et al., 2025). Estes aspectos, associado à geologia e o baixo 

intemperismo químico da região, favorecem a permanência nos solos de minerais primários 

como as micas, a formação dos minerais secundários argilominerais 2:1 e a ocorrência de 

carbonatos, que foi corroborado pela maior concentração de Ca e Mg nos perfis.  

Na região do SWIR, também foi verificada a inversão das curvas devido à 

diferença textural, ocorrendo em trechos distintos dos perfis, o que sugere diferenças na 

composição mineralógica específica. No perfil 4 (Figura 19), a inversão ocorreu em 2350 nm, 

enquanto no perfil 21 ocorreu em 1800 nm.  

 

Figura 19 – Comportamento espectral de perfil 4: LUVISSOLO HÁPLICO Pálico abrúptico 

 
Fonte: A autora. 
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Na faixa MIR, os horizontes superficiais exibiram a maior intensidade de 

reflectância, atribuído ao maior teor de areia desses horizontes. Observaram-se feições de 

absorção de filossilicatos no início do espectro e picos de quartzo entre 1250-1000 cm
-1

, os 

quais foram menos intensos em virtude do menor teor de quartzo nos perfis, que apresentaram 

textura média. As feições em 2920 e 2880 cm
−1

 foram mais visíveis no perfil 21 (Figura 20), 

devido ao seu maior conteúdo de CO, ocorrendo ainda absorções entre 1750-1600 cm
-1

, 

associadas a diferentes formas de CO na matéria orgânica. Próximo a esta região, em 1800 

cm
-1

, a feição de absorção é atribuída aos carbonatos (Wijewardane et al., 2018). 

 

Figura 20 – Comportamento espectral de perfil 21: LUVISSOLO CRÔMICO Órtico 

abrúptico  

 
Fonte: A autora. 

 

3.3.3.6 Neossolo 

 

Os seis perfis de Neossolos avaliados apresentaram alta reflectância, com 

intensidade variando entre 0,64 e 0,90 na faixa vis-NIR-SWIR. Este comportamento está 

associado ao elevado teor da fração areia e à significativa contribuição do mineral quartzo. A 

morfologia espectral foi semelhante entre os perfis, exibindo aspecto ascendente até 

aproximadamente 1300 nm, seguido por trecho de tendência plana. 
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Apesar dos perfis terem exibido curvas espectrais com características 

semelhantes, observaram-se diferenças na intensidade de reflectância entre os horizontes, 

atribuídas principalmente ao efeito da matéria orgânica e às variações granulométricas. Em 

algumas subordens de Neossolos, como nos Flúvicos e Quartzarênicos, ocorre adição de 

partículas minerais na superfície do solo pela ação eólica, hidrológica e coluvial, resultado do 

processo pedogenético de agradação – acúmulo de sedimentos (Kämpf; Curi, 2012). 

Os três perfis de Neossolos Flúvicos avaliados exibiram variações na intensidade 

de reflectância, sem, contudo, apresentarem um padrão definido entre os horizontes em 

qualquer das faixas espectrais. Tal comportamento deve-se à estratificação das camadas com 

influência de diferentes materiais, característica típica desta subordem. Estes solos são 

derivados de sedimentos aluviais com caráter flúvico até 150 cm de profundidade, o que 

resulta em camadas estratificadas e distribuição irregular do CO (Santos et al., 2025). 

Dentre os Neossolos Flúvicos, o perfil 1 apresentou a reflectância mais elevada, 

atribuída ao seu maior conteúdo de areia, conforme indicado pela classificação Psamítico no 

terceiro nível. Neste perfil, observaram-se pequenas absorções nos horizontes subsuperficiais, 

entre 800-950 nm, indicando baixos teores de óxidos de ferro (Figura 21). 

 

Figura 21 – Comportamento espectral de perfil 1: NEOSSOLO FLÚVICO Psamítico típico 

 
Fonte: A autora. 
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Na faixa vis-NIR-SWIR, as feições de absorção dos filossilicatos foram mais 

intensas em 1900 nm, indicando a predominância de minerais 2:1. Foram observadas também 

absorções entre 2340-2400 nm atribuídas às micas, o que condiz com o baixo 

desenvolvimento pedogenético dos Neossolos, que mantêm características do material de 

origem (Santos et al., 2025). Estes aspectos, que são típicos de solos pouco evoluídos, afetam 

diretamente o comportamento espectral e a sua identificação auxilia na classificação do solo 

no primeiro nível categórico. 

Na região do MIR, observaram-se absorções dos filossilicatos no início do 

espectro e uma feição mais profunda em torno de 1624 cm
-1

, atribuída a presença de minerais 

do tipo 2:1 (Souza et al., 2021), associada a diferentes formas de CO (Rossel et al., 2008). Os 

picos de quartzo entre 1250-1000 cm
-1

 foram mais suaves nos perfis 7 (Figura 22) e 15 

(Figura 23), do que no perfil 1, em virtude de seus menores teores de areia. 

 

Figura 22 – Comportamento espectral de perfil 7: NEOSSOLO FLÚVICO Sódico típico 

 
Fonte: A autora. 
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Figura 23 – Comportamento espectral de perfil 15: NEOSSOLO FLÚVICO Ta Eutrófico 

solódico 

 
Fonte: A autora. 

 

Nos Neossolos Quartzarênicos, os dois perfis avaliados apresentaram maior 

reflectância na faixa vis-NIR-SWIR para os horizontes subsuperficiais. Esta maior 

reflectância está relacionada aos seus menores teores de argila e carbono orgânico, em função 

da textura arenosa típica desta subordem. 

Na faixa MIR, observaram-se absorções características dos filossilicatos entre 

3695-3300 cm
-1

 e do CO entre 2924-2843 cm
-1

. Além disso, verificou-se forte absorção em 

1750-1250 cm
-1

, atribuída ao elevado conteúdo de quartzo no solo. Solos arenosos com baixo 

teor de hematita e alto teor de quartzo tendem a exibir acentuada absorção em torno de 1350 

cm
-1

, com curvas espectrais mais próximas do eixo X (Di Raimo et al., 2022). 

O perfil 2 (Figura 24) apresentou, na faixa vis-NIR, feições de óxidos de ferro 

muito suaves, enquanto as absorções dos filossilicatos foram típicas da caulinita, evidenciadas 

pela ocorrência de um ombro à esquerda da feição. 
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Figura 24 – Comportamento espectral de perfil 2: NEOSSOLO QUARTZARÊNICO Órtico 

típico 

 
Fonte: A autora. 

 

Por sua vez, o perfil 13 (Figura 25) exibiu feições indicativas da predominância de 

minerais do tipo 2:1, expressas pela absorção mais profunda em 1900 nm. Observou-se ainda 

na região vis-NIR uma concavidade típica dos óxidos de Fe. Na faixa MIR, as feições 

atribuídas ao CO em 2924-2843 cm
-1

, foram mais fortes, com absorções evidentes no 

horizonte superficial e no subsequente, sugerindo maior conteúdo de CO. Além disso, foi 

observada a ocorrência de um pico em 800 cm
-1

, atribuído ao quartzo (Mendes et al., 2022). 
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Figura 25 – Comportamento espectral de perfil 13: NEOSSOLO QUARTZARÊNICO 

Hidromórfico típico 

 
Fonte: A autora. 

 

O perfil de Neossolo Litólico apresentou o maior albedo entre todos os perfis 

avaliados (Figura 26). Na faixa vis-NIR-SWIR, a alta reflectância observada no horizonte 

subsuperficial está associada ao maior conteúdo de silte, enquanto, na região, MIR a elevada 

reflectância do horizonte superficial é atribuída ao maior teor de quartzo. Conforme foi 

verificado no perfil 20 de Cambissolo (Figura 16), o alto teor de silte, especialmente no 

horizonte subsuperficial que possui menor conteúdo de CO, associado à ocorrência de 

argilominerais do tipo 2:1, contribui para o aumento da intensidade de reflectância, 

configurando-se com um padrão espectral para solos menos intemperizados. 

A faixa vis-NIR-SWIR foi afetada pelo maior conteúdo de CO, característico 

desta ordem de solo, que pode ser constituída por material orgânico pouco espesso (Santos et 

al., 2025). Neste sentido, ocorreu feição com aspecto convexo até cerca de 1000 nm, e as 

absorções dos filossilicatos em 1400, 1900 e 2200 nm foram atenuadas. Observou-se uma 

feição mais profunda na banda de 1900 nm indicando a predominância de argilominerais do 

tipo 2:1, e uma absorção em 1340 nm atribuída às micas. 

Para a região do MIR, observaram-se absorções associadas aos filossilicatos, 
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carbono orgânico e quartzo, além da presença de picos associados ao quartzo em 1250-1000 

cm
-1

 e 800 cm
-1

, sendo as feições de quartzo mais pronunciadas no horizonte A em virtude de 

seu maior conteúdo de areia. 

 

Figura 26 – Comportamento espectral de perfil 23: NEOSSOLO LITÓLICO Eutrófico típico 

 
Fonte: A autora. 

 

3.3.3.7 Planossolo 

 

Os quatro perfis de Planossolos avaliados apresentaram elevada reflectância, com 

intensidade variando entre 0,69 e 0,84 na faixa vis-NIR-SWIR, evidenciando a forte 

contribuição da fração areia para o aumento do albedo. A morfologia espectral foi semelhante 

entre os perfis, com aspecto ascendente até aproximadamente 1300 nm, seguido por um 

trecho de tendência plana, especialmente nos horizontes de maior reflectância. Observaram-se 

diferenças na intensidade de reflectância entre os horizontes, atribuídas à influência da 

matéria orgânica e às variações granulométricas, de modo que os horizontes A e E, mais 

arenosos, exibiram maior reflectância e comportamento espectral semelhante. 

Os Planossolos possuem horizonte superficial (A) ou subsuperficial (E) de 

eluviação, com textura leve, enquanto o horizonte B exibe, em geral, maior concentração de 
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argila (Santos et al., 2025). Tal configuração resulta do processo pedogenético de ferrólise, 

que promove a destruição de argilominerais do horizonte superficial a partir da oxidação do 

Fe e produz gradiente textural no horizonte B (Kämpf; Curi, 2012). 

O comportamento espectral dos perfis de Planossolo Nátrico na faixa vis-NIR-

SWIR apresentou feições associadas aos óxidos de Fe, aos filossilicatos 2:1 e 1:1 e às micas. 

Estas feições foram mais pronunciadas nos horizontes subsuperficiais B, visto que o maior 

teor de matéria orgânica no horizonte A reduz a reflectância e mascara as absorções dos 

óxidos de Fe (Demattê; Terra, 2014). Assim, na faixa MIR, as feições associadas ao CO foram 

mais visíveis no horizonte A, corroborando o seu maior conteúdo de matéria orgânica. 

O perfil 3 (Figura 27) apresentou feições indicativas da ocorrência de 

argilominerais do tipo 2:1 e 1:1, destacando-se dos demais perfis pela alta reflectância do 

horizonte Bt, superior a do horizonte En na faixa vis-NIR-SWIR, possivelmente em razão do 

menor teor de CO neste horizonte. 

 

Figura 27 – Comportamento espectral de perfil 3: PLANOSSOLO NÁTRICO Órtico típico 

 
Fonte: A autora. 

 

Por sua vez, o perfil 10 (Figura 28) apresentou na faixa vis-NIR-SWIR feições 

típicas de caulinita, com absorções fortes em 1400 e 2200 nm, indicando predomínio deste 
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mineral. Já no MIR, as absorções típicas dos filossilicatos no início do espectro foram 

intensas. As caraterísticas nítidas entre 3700-3600 cm
-1

 são associadas ao padrão de absorção 

da caulinita (Di Raimo et al., 2022). Além disso, observou-se que as feições de absorção em 

2250 cm
-1

 e os picos de reflectância entre 1250-1000 cm
-1

, atribuídos ao quartzo, foram mais 

pronunciados nos horizontes E em virtude do seu maior teor de areia e menor CO. 

O horizonte E é formado a partir do processo de leucinização, em que os 

compostos orgânicos e os óxidos de ferro são removidos e o horizonte E é desenvolvido com 

coloração clara devido à ação dos minerais primários, especialmente o quartzo. Além disso, 

ocorre remoção dos cátions básicos (Kämpf; Curi, 2012). O maior teor de quartzo deste 

horizonte se reflete diretamente no aumento da intensidade de reflectância. 

 

Figura 28 – Comportamento espectral de perfil 10: PLANOSSOLO NÁTRICO Órtico mésico 

 
Fonte: A autora. 

 

O perfil 17 exibiu na região vis-NIR-SWIR feições indicativas da predominância 

de argilominerais 2:1, com absorção mais profunda em 1900 nm, enquanto uma leve 

dissimetria na curva espectral em 2200 nm evidenciou também a presença de caulinita em 

menor quantidade (Figura 29). Na faixa MIR, o horizonte A1 se destacou pela maior 

reflectância, corroborando seu maior conteúdo da fração areia. 
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Figura 29 – Comportamento espectral de perfil 17: PLANOSSOLO NÁTRICO Órtico mésico 

 
Fonte: A autora. 

 

O perfil de Planossolo Háplico apresentou pequena diferença da intensidade de 

reflectância entre os horizontes, atribuída principalmente a granulometria (Figura 30). 

Observaram-se na faixa vis-NIR-SWIR feições típicas de caulinita, e absorções atribuídas às 

micas entre 2300-2440 nm, que têm ocorrência comum nesse solo, visto que os Planossolos 

apresentam teores consideráveis de minerais primários de fácil intemperização (Levantamento 

de reconhecimento de média intensidade dos solos do Estado do Ceará, 2024). Embora as 

absorções associadas às micas tenham ocorrido também nos perfis de Planossolo Nátrico, as 

feições foram mais pronunciadas neste perfil, sugerindo maior conteúdo. 

Na região do MIR, ocorreram feições associadas aos filossilicatos, CO e quartzo, 

sendo que as absorções do CO foram verificadas apenas nos horizontes superficiais em 

virtude do conteúdo mais elevado de matéria orgânica. Os picos de reflectância atribuídos ao 

quartzo foram mais intensos no horizonte A, indicando conteúdo superior da fração areia 

neste horizonte. 
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Figura 30 – Comportamento espectral de perfil 22: PLANOSSOLO HÁPLICO Eutrófico 

típico 

 
Fonte: A autora. 

 

3.3.3.8 Plintossolo 

 

O perfil de Plintossolo apresentou alta reflectância, com intensidade máxima de 

0,79 (Figura 31). A morfologia espectral exibiu curva de formato inicialmente ascendente, 

seguido por trecho plano e, a partir de 1950 nm, leve tendência descendente. O 

comportamento espectral mostrou diferenças entre as faixas. Na região vis-NIR-SWIR 

observou-se nítida diferenciação entre horizontes, com os horizontes subsuperficiais exibindo 

maior reflectância, enquanto os horizontes superficiais apresentaram valores reduzidos. No 

MIR, por sua vez, não houve grandes diferenças de intensidade, embora o horizonte 

superficial tenha mostrado reflectância ligeiramente maior nas regiões associadas ao quartzo. 

Apesar de apresentar textura mais arenosa do que os horizontes subsuperficiais, o 

horizonte superficial teve sua reflectância significativamente reduzida pelo maior conteúdo de 

CO, o que também mascarou as feições dos óxidos de ferro e conferiu aspecto convexo a 

curva espectral na região vis-NIR (Figura 31). A maior concentração de CO é coerente com a 
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coloração cinzento-escura a bruno-acinzentada, frequentemente observada no horizonte 

superficial dos Plintossolos (Levantamento de reconhecimento de média intensidade dos solos 

do Estado do Ceará, 2024). 

Na faixa vis-NIR-SWIR, foram observadas feições acentuadas dos óxidos de Fe, 

indicativas da predominância de hematita, caracterizada pela reflectância mais baixa no início 

do espectro e concavidade estreita entre 800-1000 nm. A presença marcante de óxidos de Fe é 

típica deste solo, resultante do processo pedogenético de plintitização, caracterizado pela 

translocação de Fe na forma reduzida e sua posterior precipitação por oxidação, associada à 

dessilicação do solo (Kämpf; Curi, 2012). Estas características foram evidenciadas, sobretudo, 

nos horizontes subsuperficiais, que, embora mais argilosos, não sofrem efeito do CO. 

Na região do MIR, observaram-se feições atribuídas aos filossilicatos, CO e 

quartzo, sendo os picos de quartzo em 1250-1000 cm
-1 

e 800 cm
-1 

mais pronunciados no 

horizonte A. As feições atribuídas ao quartzo foram mais suaves no Plintossolo, em 

comparação aos perfis de solos mais arenosos. Este comportamento deve-se a textura mais 

argilosa deste solo, conforme evidenciado pela sua classificação no segundo nível categórico. 

 

Figura 31 – Comportamento espectral de perfil 24: PLINTOSSOLO ARGILÚVICO Eutrófico 

petroplíntico 

 
Fonte: A autora. 
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3.3.3.9 Vertissolo 

 

O perfil de Vertissolo apresentou alta reflectância, com intensidade máxima de 

0,58 (Figura 32). Entretanto, este perfil exibiu o menor albedo entre todos os solos avaliados, 

o que é atribuído ao menor teor de areia e à textura média. Os Vertissolos apresentam pequena 

variação textural ao longo do perfil, geralmente com textura argilosa, embora possam 

apresentar textura média (Santos et al., 2025). Quanto à morfologia espectral, observou-se 

formato inicialmente ascendente, seguido por trecho plano a partir de 1450 nm. O 

comportamento espectral exibiu diferenças de intensidade de reflectância entre os horizontes. 

Na faixa vis-NIR-SWIR, o horizonte Cn apresentou curva com suave concavidade 

entre 800-1000 nm, indicando presença de pequena quantidade de óxidos de Fe, enquanto as 

curvas dos demais horizontes exibiram aspecto convexo, associado o seu conteúdo de CO. 

Foram observadas feições atribuídas aos argilominerais 2:1, com absorção mais intensa em 

1900 nm. Entre 2261-2440 nm, ocorreram absorções associadas aos carbonatos e às micas, 

comuns a este solo, que possui desenvolvimento incipiente e alta saturação por bases (Santos 

et al., 2025), conforme evidenciado pelos teores elevados de Ca e Mg. 

A presença de argilominerais 2:1 é característica dos Vertissolos, nos quais ocorre 

o processo pedogenético de vertização. Este processo é típico de solos com predomínio de 

argilominerais esmectíticos e resulta na formação de fendas, agregados cuneiformes e 

superfícies de fricção. Estes minerais esmectíticos podem formar associações estáveis com o 

CO, conferindo coloração escura aos horizontes superficiais (Kämpf; Curi, 2012), o que 

contribui para a redução da reflectância destes horizontes.  

Na região do MIR, observou-se que as feições atribuídas aos filossilicatos do tipo 

1:1 e ao quartzo foram mais suaves, refletindo a mineralogia dos Vertissolos que é dominada 

por filossilicatos 2:1 e apresenta teor mais baixo de areia. O horizonte Ap destacou-se na faixa 

entre 2000-1250 cm
-1

, com comportamento distinto dos demais horizontes, o que é atribuído 

ao seu elevado teor de CO. De modo mais específico, na região de 1725-1275 cm
-1

, as fortes 

absorções são atribuídas a diferentes grupos funcionais da matéria orgânica, associado à 

banda de absorção da água aproximadamente em 1600 cm
-1

 (Rossel et al., 2008; Zhang; 

Hartemink; Huang, 2021), que pode ser amplificada pela água adsorvida na estrutura dos 

argilominerais 2:1, típicos dessa classe de solo.  
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Figura 32 – Comportamento espectral de perfil 16: VERTISSOLO EBÂNICO Sódico salino  

 
Fonte: A autora. 

 

3.3.4 Agrupamento de horizontes do solo na faixa espectral vis-NIR-SWIR 

 

A análise de componentes principais (ACP), aplicada sobre os espectros de 

reflectância suavizados, resultou na extração dos cinco primeiros componentes que foram 

utilizados para a classificação não supervisionada. Estes componentes principais explicaram 

99,5% da variabilidade total dos dados, sendo que o maior percentual de variação foi 

explicado pelo primeiro componente, com redução progressiva nos componentes 

subsequentes (Figura 33).  
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Figura 33 – Variância explicada pelas cinco primeiras componentes na faixa vis-NIR-SWIR 

 
Fonte: A autora. 

 

A análise dos autovetores evidenciou as contribuições positivas e negativas dos 

valores de reflectância para a produção dos escores de cada componente principal (Figura 34), 

de forma a destacar as regiões espectrais de maior importância. 

 

Figura 34 – Autovetores da análise de componentes principais na faixa vis-NIR-SWIR 

 
Fonte: A autora. 
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A primeira componente (CP1) foi dominada por autovetores negativos, com 

contribuição relativamente constante ao longo do espectro. Já as demais componentes 

apresentaram padrões contrastantes com autovetores positivos e negativos. Nas CP2, CP3 e 

CP5 destacaram-se cargas negativas em torno de 2200 nm, região associada a feições de 

absorção de argilominerais filossilicatos. A CP4, por sua vez, mostrou forte contribuição 

negativa em 1900 nm, que também está relacionada a esses minerais. Além disso, nas CP3 e 

CP5, ocorreram cargas negativas entre 500-850 nm, região que é característica de absorções 

atribuídas aos óxidos de ferro (Madeira Netto; Baptista, 2000). 

A classificação não supervisionada pelo método K-médias, utilizando os escores 

obtidos na ACP, resultou na separação das amostras de solos em seis grupos distintos (Figura 

35). O número ótimo de grupos foi definido com base no menor valor do coeficiente de 

partição (= 0,59) e no maior valor da entropia de partição (= 0,87). 

 

Figura 35 – Agrupamento das amostras de solos com escores da ACP na faixa vis-NIR-SWIR 

 
Cada símbolo representa um perfil de solo identificado por seu número. Cada cor representa um grupo. 

Fonte: A autora. 

 

A quantidade de amostras de solo nos grupos, bem como a identificação dos 

horizontes pedológicos que integraram cada grupo e a respectiva classificação do solo pode 

ser visualizada na Tabela 2. 
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Tabela 2 – Identificação de amostras do solo por grupo na faixa vis-NIR-SWIR 

 Horizontes   

Grupos A AB E BA B BC C Total Solos 

1 1 1  1 3 2  8 TXp, SNo, PVd, TCo, FTe 

2 1 2  3 12  5 23 
RQo, SXo, CXe, PVAd, LAd, PVAd, 

CXd 

3  1   10   11 PACe, PAd, PAdx, SNo, SXe 

4 12  3    12 27 
RYq, RYn, GZn, SNo, CXe, RQg, SNo, 

PVd, SXe, RLe 

5 6  1  2 1 15 25 
SNo, TXp, RYn, GZn, PVAd, RYe, VEn, 

PVAd, CXd 

6 10 4  1 1   16 
RQo, PACe, PAd, GZn, PAdx, SNo, 

LAd, PVAd, FTe 

As linhas representam os grupos e as colunas representam os horizontes. 

Fonte: A autora. 

 

Ao analisar os agrupamentos, observou-se, de modo geral, que os grupos 1 e 3 

concentraram, principalmente, amostras do horizonte B textural e suas transições. Os grupos 2 

e 5 reuniram amostras dos horizontes superiores e inferiores, embora, tenha havido 

predomínio de horizontes de subsuperfície. O grupo 4 caracterizou-se pela predominância de 

amostras superficiais A e subsuperficiais C, além de algumas ocorrências do horizonte E. Já 

no grupo 6 prevaleceram amostras dos horizontes superficiais e de suas transições, 

evidenciando a influência da posição do solo na resposta espectral. 

De forma semelhante, Demattê et al. (2019) também identificaram seis grupos 

espectrais ao classificar espectros na faixa vis-NIR-SWIR de solos provenientes de diferentes 

estados do Brasil. Os autores observaram que o padrão espectral destas classes está 

diretamente ligada aos teores de carbono orgânico, aos óxidos de Fe, à mineralogia da argila e 

à distribuição granulométrica. Além dos atributos citados, no presente estudo o agrupamento 

dos solos também foi igualmente influenciado pelo acúmulo de sais, o que torna estes 

resultados inovadores. 

Os resultados obtidos indicaram que a clusterização das amostras de solos não 

acompanhou a classificação taxonômica dos perfis, uma vez que os solos pertencentes a uma 

mesma ordem foram distribuídos em clusters distintos. Entretanto, os agrupamentos refletiram 

uma tendência de distinção entre horizontes, sugerindo que as feições espectrais capturam 

diferenças estruturais e composicionais do solo. Embora os grupos tenham se diferenciado em 
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função dos horizontes, observou-se na classificação com a faixa vis-NIR-SWIR a tendência 

de agrupar amostras com maior estabilidade vertical, de modo que solos com horizontes mais 

homogêneos, como os Neossolos, mantiveram clusters estáveis ao longo do perfil. 

A identificação dos horizontes pedológicos é uma prática indispensável para a 

classificação dos solos, visto que corresponde ao local de atuação dos processos 

pedogenéticos e preserva características fundamentais que auxiliam na compreensão da 

gênese (Zhang; Hartemink; Huang, 2021). Nesta perspectiva, a espectroscopia de reflectância 

demonstrou capacidade para captar nuances ligada à composição e à diferenciação 

pedogenética dos horizontes, o que se refletiu na organização espectral em função da 

estratificação vertical dos perfis de solo. 

Esta tendência de distribuição dos agrupamentos dos solos também foi verificada 

por meio da análise do comportamento espectral médio de cada cluster, a partir dos dados de 

reflectância suavizados (Figura 36). 

 

Figura 36 – Espectros de reflectância médio por grupo na faixa vis-NIR-SWIR 

 
Fonte: A autora. 

 

O comportamento espectral médio dos grupos formados apresentou alta 

reflectância, alcançando intensidade superior a 0,50 em todos os grupos. Corroborando este 

resultado, Demattê et al. (2019) também observaram elevado albedo nos solos do bioma 
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Caatinga, tendo sido este comportamento atribuído à predominância da fração areia nos solos, 

associado ao menor conteúdo de carbono de orgânico em virtude das altas temperaturas que 

promovem a aceleração da decomposição da matéria orgânica do solo. 

Os grupos 1 e 3 apresentaram comportamento espectral médio similar, com 

feições típicas de óxidos de Fe - goethita e hematita na região vis-NIR. Os espectros desses 

grupos exibiram também absorções em 1400 e 1900 nm associadas às hidroxilas dos 

argilominerais 2:1 ou a água estrutural desses minerais. Além disso, observou-se absorções 

bem definidas em torno de 2200 nm com um ombro do lado esquerdo, atribuída à vibração da 

ligação Al-OH da caulinita (Meneses; Almeida; Baptista, 2019), e feições a partir de 2300 nm 

associadas às micas. O grupo 3 exibiu feição intensa em 2200 nm, indicando predominância 

da caulinita. Esses grupos reuniram horizontes subsuperficiais de Argissolos, Luvissolos, 

Planossolos e Plintossolos, se caracterizando pela presença de óxidos de Fe e acumulação de 

argila, que foi corroborado pelo teor superior dessa fração do solo (Figura 37c). 

 

Figura 37 – Variabilidade dos atributos do solo (g kg-¹) por grupo na faixa vis-NIR-SWIR: a) 

areia; b) silte; c) argila  

 
Fonte: A autora. 

 

O grupo 2 apresentou feições características de óxidos de Fe na região vis-NIR, 

contudo estas feições foram suaves. Ocorreram, ainda, absorções em 1400, 1900 e 2200 nm, 

típicas de argilominerais. Neste cluster incidiram horizontes de Cambissolos, Neossolo 
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Quartzarênico, Argissolo Vermelho e Latossolo Amarelo. As feições dos óxidos de ferro são 

atribuídas aos dois últimos solos, enquanto os argilominerais compõem todas as classes de 

solos. Os resultados sugerem que este cluster não refletiu um processo pedogenético 

específico, visto que agregou solos com diferentes graus de intemperismo e formados por 

processos distintos. Em contrapartida, as amostras que compõem o grupo se assemelharam 

pelo alto conteúdo de areia (Figura 37a), resultando em elevada reflectância (> 0,60). 

No grupo 4, observaram-se absorções em 1400, 1900 e 2200 nm, sendo as duas 

últimas feições mais profundas e sem ocorrência de degrau, indicando a prevalência de 

argilominerais 2:1. Este grupo apresentou o maior fator de reflectância (> 0,70), o que se deve 

a ocorrência de perfis de Neossolos e de horizontes superficiais de Cambissolos e 

Planossolos. Tais amostras caracterizam-se pelo elevado conteúdo de areia, conferindo ao 

grupo maior destaque para esse atributo (Figura 37a) e propiciando maiores reflectâncias. 

Além disso, ocorreram absorções na faixa 2300-2400 nm, típicas do grupo das micas, 

minerais comuns em solos menos evoluídos (Meneses; Almeida; Baptista, 2019). Estas 

características sugerem o predomínio de processos incipientes no grupo 4. 

No grupo 5 incidiram absorções em torno de 1400, 1900 e 2200 nm, com a feição 

de 1900 nm mais intensa indicando o predomínio de argilominerais 2:1. O espectro médio 

deste cluster apresentou a menor reflectância de todos os grupos, não ocorrendo feições de 

absorção na região vis-NIR, que exibiu aspecto convexo. Estas características podem ser 

atribuídas ao maior conteúdo de argila (Figura 37c), associado ao alto teor de CO devido o 

agrupamento de horizontes superficiais (Figura 38a). Dentre os solos deste cluster, 

predominaram amostras de Gleissolo, Neossolo Fúvico, Planossolo Nátrico e Vertissolo, os 

quais sofrem efeito da água e exibiram problemas de sais, o que sugere o agrupamento, 

sobretudo, com base na CE, Na e PST (Figura 38), conferindo destaque para estes atributos. 
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Figura 38 – Variabilidade dos atributos do solo por grupo na faixa vis-NIR-SWIR: a) carbono 

orgânico (g kg-¹); b) pH; c) sódio (cmolc kg-¹); d) PST; e) CE (dS m-¹) 

 
Fonte: A autora. 

 

O comportamento espectral médio do grupo 6 apresentou feições típicas de 

absorções dos argilominerais, com destaque para as bandas mais intensas em torno de 1400 e 

2200 nm, indicativas da presença de caulinita. Neste cluster, foram agrupadas amostras de 

Latossolo, Planossolo, Plintossolo e Argissolo, com destaque para a ocorrência de solos mais 

evoluídos e predomínio de horizontes superficiais, o que propiciou na faixa vis-NIR aspecto 

convexo, com ausência de feições de absorção. Este comportamento está relacionado ao 

elevado teor de CO presente nos horizontes superficiais (Figura 38a), visto que a matéria 

orgânica, formada por diferentes formas de C, é o principal responsável pela diminuição da 

reflectância na região vis-NIR (Madeira Netto; Baptista, 2000). Com isso, evidencia-se que 

este cluster se caracterizou pelo agrupamento de amostras superficiais com alto teor de areia. 

No que se referem aos nutrientes, estes não alteram diretamente o espectro, de 

modo a não apresentar características de absorção. Entretanto, normalmente encontram-se 

adsorvidos nos grupos funcionais de compostos minerais e orgânicos (Rizzo et al., 2021). 

Neste contexto, as maiores concentrações de macronutrientes observadas nos grupos 1 e 5 

(Figura 39) podem estar associadas aos conteúdos elevados de argila e carbono orgânico 

destes grupos (Figuras 37 e 38). 
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Figura 39 – Variabilidade dos atributos do solo (cmolc kg-¹) por grupo na faixa vis-NIR-

SWIR: a) cálcio; b) magnésio; c) potássio; d) nitrogênio (g kg-¹) 

 
Fonte: A autora. 

 

3.3.5 Agrupamento de horizontes do solo na faixa espectral MIR 

 

Na análise de componentes principais (ACP) realizada com os espectros de 

reflectância MIR suavizados, os cinco primeiros componentes explicaram 98,2% da 

variabilidade total dos dados. O maior percentual de variação foi explicado pela primeira 

componente principal (CP1 = 69,3%), com redução progressiva nas subsequentes (Figura 40).  
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Figura 40 – Variância explicada pelas cinco primeiras componentes na faixa MIR 

 
Fonte: A autora. 

 

A partir da análise dos autovetores observaram-se as contribuições dos valores de 

reflectância para a produção dos escores de cada componente principal (Figura 41), o que 

propiciou destacar as regiões espectrais de maior importância. 

 

Figura 41 – Autovetores da análise de componentes principais na faixa MIR 

 
Fonte: A autora. 
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As componentes exibiram padrões contrastantes com autovetores positivos e 

negativos, com exceção da primeira componente principal (CP1) em que os autovetores foram 

negativos. As CP1 e CP5 apresentaram forte contribuição negativa em torno de 3600 cm
-1

, 

região caracterizada por absorções de filossilicatos 2:1 e 1:1. Nas CP2 e CP5 destacaram-se 

cargas positivas na faixa de 1230-1175 cm
-1

, com a formação de picos altos de reflectância. A 

CP3 também exibiu picos de reflectância nesta região, contudo menos intensos. Os picos por 

volta de 1200 cm
-1 

são atribuídos ao quartzo e ao ferro cristalino. A CP4, por sua vez, mostrou 

forte contribuição negativa na região de 2200-2169 cm
-1

. As bandas de absorção entre 2233-

1625 são atribuídas à sílica presente no quartzo e nos filossilicatos (Mendes et al., 2022). 

Para a classificação não supervisionada com o método K-médias foram utilizados 

os escores das cinco primeiras componentes principais. A classificação resultou na divisão das 

amostras de solos em nove grupos distintos (Figura 42), com três grupos a mais do que a 

classificação feita com os espectros de vis-NIR-SWIR. O número ótimo de grupos foi 

determinado com base no menor valor do coeficiente de partição (= 0,64) e o maior valor da 

entropia de partição (= 0,83). 

 

Figura 42 – Agrupamento das amostras de solos com escores da ACP na faixa MIR 

 
Cada símbolo representa um perfil de solo identificado por seu número. Cada cor representa um grupo. 

Fonte: A autora. 
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A quantidade de amostras de solo em cada grupo, a identificação dos horizontes 

pedológicos que integraram os grupos e a respectiva classificação taxonômica do solo pode 

ser observada na Tabela 3. 

 

Tabela 3 – Identificação de amostras do solo por grupo na faixa MIR 

 Horizontes   

Grupos A AB E BA B BC C Total Solos 

1 4 3 1 1 4   13 PACe, PAd, PAdx, LAd, SXe 

2 1      5 6 RYq, RQg 

3 6    2  1 9 
TXp, GZn, LAd, RYe, VEn, PVd, CXd, 

TCo 

4 2    1 1 14 18 RYq, RYn, GZn, SNo, CXe, RYe 

5  1  1 6   8 
PAd, PAdx, SNo, CXe, PVAd, PVd, SXe, 

FTe 

6 6 1     5 12 RQo, PACe, PVAd, LAd, SNo, SXe 

7 7 2 1 1 3   14 
SNo, PAd, PVAd, SNo, PVAd, CXd, SXe, 

FTe 

8 1   2 8 4 6 21 
RYq, SNo, TXp, RYn, CXe, RYe, VEn, 

SNo, PVd, TCo, SXe 

9 3 1 2    1 7 SNo, CXe, RLe 

As linhas representam os grupos e as colunas representam os horizontes. 

Fonte: A autora. 

 

A análise dos agrupamentos evidenciou, de modo geral, que o grupo 1 concentrou 

horizontes superficiais e subsuperficiais, porém com prevalência do horizonte A e sua 

transição. Nos grupos 2 e 4 houve maior predominância de amostras do horizonte C. Os 

grupos 3, 6, 7 e 9 agruparam amostras tanto superficiais quanto subsuperficiais (E, B e C), 

embora tenha prevalecido o horizonte A. Nos grupos 5 e 8, por sua vez, verificou-se a 

ocorrência de amostras subsuperficiais, com predomínio do horizonte B textural. 

A classificação dos solos na faixa MIR seguiu a mesma tendência observada na 

faixa vis-NIR-SWIR, com o agrupamento estruturado principalmente em função dos 

horizontes. Entretanto, a região MIR apresentou maior sensibilidade para detectar variações 

internas ao longo do perfil, visto que perfis com heterogeneidade no material de origem, como 

o Neossolo Flúvico, mostraram maior diferenciação entre clusters. Isso deve-se ao fato de 

que, no MIR, manifestam-se as vibrações fundamentais da maioria dos compostos orgânicos e 
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minerais do solo, o que gera informações mais específicas sobre as características do solo em 

virtude do tipo de interação da energia (Garrett et al., 2022). 

De maneira análoga, Zhang; Hartemink; Huang (2021) observaram que amostras 

de diferentes ordem de solos podem ser agrupadas em um mesmo cluster em função de 

similaridades na composição, uma vez que as características espectrais dos solo estão 

intensamente relacionadas aos horizontes pedológicos e às propriedades associadas. Contudo, 

de modo oposto, estes autores identificaram menor número de grupos, totalizando 8 na faixa 

MIR. Do mesmo modo, Mendes et al. (2022)
 
observaram apenas 5 grupos espectrais nesta 

faixa. Diferentemente do presente estudo, esses autores não avaliaram solos com expressivo 

acúmulo de sais, característica que possivelmente contribuiu para o maior número de grupos. 

As tendências de distribuição seguidas pelos nove grupos espectrais da faixa MIR, 

foram melhores evidenciadas a partir da análise do comportamento espectral médio de cada 

cluster, empregando dados de reflectância suavizados. O maior número de feições observadas 

nesta região do espectro contribuiu para o aumento do número de clusters (Figura 43). 

 

Figura 43 – Espectros de reflectância médio por grupo na faixa MIR 

 
Fonte: A autora. 

 

Avaliando-se o comportamento espectral médio dos grupos, observou-se que os 

clusters 2, 3, 6 e 9 destacaram-se por exibir comportamento distinto em algumas regiões. Os 
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grupos 2 e 9 apresentaram alta reflectância, com feições de absorção pronunciadas, atribuídas 

aos filossilicatos entre 3695-3622 e 3529-3394 cm
-1

 e
 
ao quartzo em 2250-1620 cm

-1
, 

evidenciando a forte contribuição destes atributos nos grupos. Todavia, o cluster 2 apresentou 

pico associado ao quartzo em 1250-1000 cm
-1

 mais pronunciado, em razão do maior conteúdo 

de areia (Figura 44a). Já o grupo 9, exibiu feições de caulinita nítidas com picos entre 1780-

1500 cm
-1

, e feição espectral estreita em 1820 cm
-1

 relacionada à presença de silicatos 

(Mendes et al., 2022), além de absorções de CO entre 1700-1640 cm
-1

 (Rossel et al., 2008). 

Nesses grupos ocorreram, principalmente, amostras dos horizontes A e C, 

oriundas dos Neossolos, do Planossolo Nátrico e do Cambissolo Háplico, evidenciando o 

agrupamento de solos com desenvolvimento incipiente. No grupo 2 prevaleceram amostras do 

horizonte C, o que propiciou a alta reflectância devido ao elevado conteúdo de areia e 

reduzido teor de CO. No grupo 9, por sua vez, predominaram amostras do horizonte A e, 

embora tenha apresentado elevado conteúdo da fração areia, o alto teor de CO oriundo dos 

horizontes superficiais reduziu os picos reflectância (Figuras 44a e 45a). 

 

Figura 44 – Variabilidade dos atributos do solo (g kg-¹) por grupo na faixa MIR: a) areia; b) 

silte; c) argila  

 
Fonte: A autora. 

 

O grupo 3 apresentou albedo reduzido e comportamento espectral distinto de 

todos os clusters na faixa de 2000-1250 cm
-1

. A baixa reflectância, com as feições típicas de 

quartzo reduzidas, deve-se ao menor conteúdo de areia e o teor mais elevado de CO (Figuras 
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44a e 45a). Por sua vez, as absorções entre 1750-1430 cm
-1 

são atribuídas ao alto teor de CO e 

a presença de carbonatos (Soriano-Disla et al., 2014; Terra et al., 2021). Além disso, o maior 

teor de argila deste grupo (Figura 44c) contribuiu para a ocorrência de feições pronunciadas. 

No grupo 3 ocorreu, sobretudo, horizontes superficiais de Argissolo, Cambissolo, 

Gleissolo, Luvissolo, Neossolo Flúvico e Vertissolo. Diante disso, observou-se que o grupo 

reuniu amostras de solos menos desenvolvidos, e concentrou também amostras com alto 

conteúdo de CO, ricas em bases e com ocorrência de carbonatos, o que foi corroborado pelo 

maior conteúdo de macronutrientes (Figura 46). Esta característica é comum em solos do 

Semiárido, os quais podem ser formados a partir de rochas calcárias, apresentando horizonte 

superficial com alto conteúdo de MO e saturação por bases (Araújo Filho et al., 2022).  

O comportamento espectral do grupo 6 apresentou feições típicas de quartzo bem 

pronunciadas, embora este cluster tenha exibido baixa reflectância. As feições pronunciadas 

do quartzo entre 2250-2000, 1250 e 800 cm
-1

 são atribuídas ao alto teor de areia do grupo 

(Figura 44a). Por outro lado, a baixa reflectância está associada ao um maior conteúdo de CO 

(Figura 45a) e a ocorrência de óxidos de Fe, os quais promovem espectros descendentes 

(Mendes et al., 2022). Este grupo concentrou, sobretudo, amostras superficiais de Argissolo 

Acinzentado, Argissolo Vermelho-Amarelo, Latossolo Amarelo e Neossolo Quartzarênico, 

evidenciando o agrupamento de solos com alto teor de areia e com presença de óxidos de Fe. 

 

Figura 45 – Variabilidade dos atributos do solo por grupo na faixa MIR: a) carbono orgânico 

(g kg-¹); b) pH; c) sódio (cmolc kg-¹); d) PST; e) CE (dS m-¹) 

 
Fonte: A autora. 
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Quanto aos demais grupos (1, 4, 5, 7 e 8), observou-se que ocorreu 

comportamento espectral muito similar, porém com distinção da intensidade de reflectância. 

Estes grupos exibiram baixa reflectância e absorções mais suaves associadas aos filossilicatos 

e óxido de alumínio (3695-3622 e 3529-3394 cm
-1

), ao CO (2924-2843 cm
-1

) e ao quartzo 

(2250-1620 e 1250-1000 cm
-1

). Nos grupos 1 e 7 se concentraram, sobretudo amostras do 

horizonte A, provenientes de Argissolos, Cambissolo, Latossolo, Planossolo e Plintossolo, os 

quais apresentam camada superficial mais arenosa. Já o cluster 4 reuniu amostras do horizonte 

C, oriundas de Gleissolo Sálico, Neossolo Flúvico e Planossolo Nátrico, promovendo no 

grupo alto pH e elevada PST (Figura 45). 

Para os grupos 5 e 8, observou-se que os picos típicos de quartzo em 1250-1000 

cm
-1 

foram muito reduzidos, o que foi atribuído aos seus maiores teores de argila (Figura 44c). 

Estes clusters reuniram amostras subsuperficais de Argissolo, Cambissolo, Luvissolo, 

Planossolo, Plintossolo e Vertissolo, evidenciando o agrupamento com base no processo de 

acumulação de argila. Além disso, verificou-se que o grupo 8 concentrou amostras com 

acúmulo de sais tanto no horizonte B quanto no C, conforme evidenciado pelos altos valores 

de Na, PST e CE deste grupo, associado ao acúmulo de Ca e MG  (Figuras 45 e 46). Assim, 

estes aspectos sugerem o agrupamento com base no acúmulo de cátions trocáveis e sais.  

 

Figura 46 – Variabilidade dos atributos do solo (cmolc kg-¹) por grupo na faixa MIR: a) cálcio; 

b) magnésio; c) potássio; d) nitrogênio (g kg-¹) 

 
Fonte: A autora. 
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Mediante os resultados obtidos na classificação, verificou-se que a faixa MIR 

apresentou maior capacidade de detectar alterações sutis ao longo do perfil, quando 

comparada à faixa vis-NIR-SWIR. Este comportamento corrobora os achados de Zhang; 

Hartemink; Huang (2021), que observaram boa diferenciação entre os horizontes do solo na 

faixa MIR, atribuídas às associações entre os atributos que compõem os horizontes do solo e a 

interação destes com a radiação eletromagnética nesta faixa. 

Todavia, considerando que ambas as regiões espectrais foram capazes de detectar 

transições nítidas entre horizontes, agrupando amostras de horizontes com características 

semelhantes em clusters comuns, infere-se que a análise espectral tem potencial de ser usada 

na identificação de horizontes, especialmente daqueles com características contrastantes.  

 

3.4 Conclusões 

 

A análise do comportamento espectral dos solos fornece informações de extrema 

relevância para a Ciência do Solo, confirmando, conforme a hipótese proposta, a capacidade 

da espectroscopia de reflectância em caracterizar o solo de forma eficiente. Evidencia-se que 

a análise espectral permite identificar feições associadas a atributos usados na classificação do 

solo no primeiro nível categórico, como o acúmulo da argila, a presença de óxidos de Fe e de 

minerais menos intemperizados, o que reforça o potencial da técnica em estudos pedológicos. 

Do ponto de vista dos agrupamentos, constata-se que a variabilidade espectral está 

diretamente relacionada às características dos horizontes, que se diferenciam em função da 

posição no perfil. Tendo em vista que os horizontes subsuperficiais são diagnósticos, e 

apresentam menor influência da matéria orgânica, as feições espectrais características das 

classes de solo são mais bem expressas nestes horizontes. Além disso, verifica-se uma 

complementariedade entre os espectros, com o vis-NIR-SWIR captando diferenças mais 

expressivas nos solos, como variações texturais, enquanto o MIR destaca variações mais sutis 

no perfil, como o acúmulo de sódio. Característica que não foi identificada em outros estudos. 

Os resultados obtidos representam adequadamente e em primeira mão os 

comportamentos espectrais de solos do Nordeste Brasileiro, caracterizados pela alta 

reflectância, presença de feições de absorção indicadoras de minerais primários e secundários 

de fácil intemperização (filossilicatos do tipo 2:1) e indicadoras de carbonatos. Embora o 

acúmulo de sais, uma das principais características destes solos, não seja identificado 

diretamente no espectro, a diferenciação de grupos com essa característica contribui para o 

mapeamento de áreas susceptíveis a degradação por salinização e sodificação. 
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4 CAPÍTULO II - PREDIÇÃO DE ATRIBUTOS FÍSICOS E QUÍMICOS COM 

ESPECTROSCOPIA DO VISÍVEL AO INFRAVERMELHO MÉDIO EM SOLOS DO 

NORDESTE DO BRASIL 

 

Resumo 

 

O monitoramento das características edáficas é primordial para o manejo adequado e a 

conservação dos solos, sendo especialmente importante em áreas sob forte exploração e 

susceptíveis à degradação. Assim, o objetivo desse estudo foi quantificar os atributos físico-

químicos, bem como a salinidade e sodicidade de solos do Nordeste brasileiro utilizando 

espectroscopia de reflectância na faixa de 350 – 15000 nm e algoritmos de estatística 

multivariada. Foram avaliadas 114 amostras de 24 perfis de solos provenientes de municípios 

do Ceará. Na análise do solo com metodologia convencional foi determinado a granulometria, 

carbono orgânico, nitrogênio, fósforo, potássio, cálcio, magnésio, sódio, alumínio trocável, 

percentagem de sódio trocável, condutividade elétrica, pH (H2O – 1:2,5), soma de bases, 

capacidade de troca catiônica e saturação por bases. Na análise espectral foi avaliado a 

reflectância do solo nas faixas do visível, infravermelho próximo, infravermelho de ondas 

curtas (vis-Nir-SWIR) e infravermelho médio (MIR). O resultado da análise convencional foi 

avaliado com estatística descritiva. Os dados espectrais foram pré-processados com as 

técnicas de conversão para absorbância e suavização com o filtro Savitzky-Golay. Os modelos 

preditivos dos atributos foram desenvolvidos com os espectros brutos e pré-processados 

associados aos algoritmos de Regressão por Mínimos Quadrados Parciais (PLSR), Máquina 

de Vetor Suporte com funções Kernel lineares e radiais (SVM-Linear e SVM-Radial) e 

Algoritmo Cubista (CA). O desempenho dos modelos preditivos foi avaliado pelas métricas 

de R², RMSE, RPD e RPIQ. Os modelos desenvolvidos na região do infravermelho médio 

superaram o desempenho das modelagens realizadas na faixa do visível ao infravermelho de 

ondas curtas, com exceção das predições de Na, PST e V. As predições da salinidade e 

sodicidade apresentaram desempenho razoável. Dentre os algoritmos de regressão e as 

técnicas de pré-processamento avaliadas, o algoritmo PLSR e a suavização com o filtro 

Savitzky-Golay se destacaram na produção dos melhores modelos. A espectroscopia foi capaz 

de predizer os atributos do solo com, no mínimo, desempenho satisfatório, com exceção do 

cálcio, que apresentou desempenho insatisfatório em todas as faixas espectrais.  

 

Palavras-chave: quantificação; atributos físico-químicos; salinidade; sodicidade. 



 
97 

Abstract 

 

Monitoring soil characteristics is essential for proper soil management and conservation, and 

is especially important in areas under heavy exploitation and susceptible to degradation. Thus, 

the objective of this study was to quantify the physical-chemical attributes, was well as the 

salinity and sodicity of soils in Northeastern Brazil using reflectance spectroscopy in the 

range of 350–15,000 nm and multivariate statistical algorithms. A total of 114 samples from 

24 soil profiles from municipalities in Ceará were evaluated. In the soil analysis using 

conventional methodology, the following were determined: particle size, organic carbon, 

nitrogen, phosphorus, potassium, calcium, magnesium, sodium, exchangeable aluminum, 

percentage of exchangeable sodium, electrical conductivity, pH (H₂O – 1:2.5), sum of bases, 

cation exchange capacity, and base saturation. In spectral analysis, soil reflectance was 

evaluated in the visible, near-infrared, short-wave infrared (vis-Nir-SWIR), and mid-infrared 

(MIR) ranges. The results of conventional analysis were evaluated using descriptive statistics. 

The spectral data were preprocessed using absorbance conversion techniques and smoothing 

with the Savitzky-Golay filter. The predictive models of the attributes were developed with 

the raw and preprocessed spectra associated with the Partial Least Squares Regression 

(PLSR), Support Vector Machine with linear and radial kernel functions (SVM-Linear and 

SVM-Radial), and Cubist Algorithm (CA) algorithms. The performance of the predictive 

models was evaluated using the metrics R², RMSE, RPD, and RPIQ. The models developed in 

the mid-infrared region outperformed the models developed in the visible to shortwave 

infrared range, with the exception of the predictions for Na, PST, and V. The predictions for 

salinity and sodicity showed reasonable performance. Among the regression algorithms and 

preprocessing techniques evaluated, the PLSR algorithm and smoothing with the Savitzky-

Golay filter stood out in producing the best models. Spectroscopy was able to predict soil 

attributes with at least satisfactory performance, with the exception of calcium, which 

performed unsatisfactorily in all spectral ranges. 

 

Keywords: quantification; physical-chemical attributes; salinity; sodicity. 
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4.1 Introdução 

 

O monitoramento eficiente das características pedológicas é indispensável para 

identificar o potencial e as limitações do solo e promover o seu manejo sustentável (Beniaich 

et al., 2025). Essa necessidade é especialmente importante em áreas sob intensa exploração 

antrópica e com solos susceptíveis à degradação, como o Nordeste do Brasil, em que as 

práticas agrícolas e extrativistas, intensificada pelas condições climáticas da região, têm 

acelerado o processo de degradação do solo (Souza; Leite; Medeiros, 2021). 

A região Nordeste apresenta significativa variedade edafoclimática, abrigando 

quatro biomas e a maior diversidade edáfica do país. Essa variedade resulta em solos em 

diferentes estádios de desenvolvimento e com atributos muito heterogêneos (Souza; Leite; 

Medeiros, 2021). O bioma Caatinga, predominante na região, compõe as florestas tropicais 

sazonalmente secas, que apresentam-se distribuídas pelo mundo, contudo esse bioma é 

endêmico e ocorre exclusivamente no Brasil, caracterizando-se por um clima semiárido, com 

alta sazonalidade e variabilidade espacial das chuvas (Silva et al., 2025). 

Nesse contexto, a diversidade litológica da Caatinga propicia a formação de 

variados tipos de solos, sendo comum a ocorrência de solos pouco profundos e pouco 

desenvolvidos, se comparados aos de regiões tropicais úmidas. Nesses solos, os processos de 

formação incluem a argiluviação, salinização e sodificação (Souza et al., 2022). 

Consequentemente, a presença de sais ocasionando solos salinos e sódicos, é frequente. 

Embora a degradação pelo acúmulo de sais seja uma preocupação global, este fenômeno é 

mais comum em regiões áridas e semiáridas, devido ao manejo inadequado e as condições 

climáticas (Hailu; Mehari, 2021). 

Para o manejo adequado e a conservação desses solos, são essenciais as práticas 

de mapeamento e a caracterização dos atributos. Convencionalmente, essa caracterização é 

feita por meio de análises laboratoriais de química úmida, as quais, embora precisas, 

envolvem múltiplas etapas analíticas, com a utilização de reagentes químicos e equipamentos 

de elevado custo (Beniaich et al., 2025). Além de possuírem potencial de causar 

contaminação ambiental pelo descarte inadequado dos resíduos gerados. 

Como alternativa promissora de análise, a espectroscopia de reflectância destaca-

se por ser um método rápido, não destrutivo, e isento de agentes químicos.  Essa técnica 

baseia-se na interação entre e a radiação eletromagnética nas faixas do visível (vis: 350-700 

nm), infravermelho próximo (NIR: 700-1100 nm), infravermelho de ondas curtas (SWIR: 

1100-2500 nm) e infravermelho médio (MIR: 2.500-25.000 nm ou 4.000-400 cm
−1

), e os 
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componentes orgânicos e minerais do solo (Mendes et al., 2022).  

A faixa vis-NIR-SWIR vem sendo mais amplamente estudada para a previsão dos 

atributos do solo (Padarian; Minasny; Mcbratney, 2019), o que deve-se principalmente a 

portabilidade do equipamento e o preparo simplificado de amostras. A faixa MIR por sua vez, 

embora necessite de equipamento mais oneroso e preparo rigoroso das amostras, os dados 

gerados possuem maior acurácia (Lotfollahi et al., 2023). Estudos demonstram que modelos 

obtidos com dados MIR comumente superam o desempenho daqueles gerados com dados vis-

NIR-SWIR (Dangal et al., 2019), o que justifica o estudo mais profundo dessa faixa espectral. 

Apesar dos avanços que a espectroscopia tem obtido para a predição dos atributos 

do solo (Tavakoli et al., 2023), a heterogeneidade pedológica limita a adoção de modelos 

universais. Ademais, a aplicação dessa técnica em solos das regiões áridas e semiáridas ainda 

é incipiente (Taghdis; Farpoor; Mahmoodabadi, 2022). Torna-se, portanto, urgente realizar 

estudos espectrais nessas regiões, uma vez que modelos calibrados para uma condição 

edafoclimática particular raramente são aplicáveis em outra (Moura-Bueno et al., 2020). 

No Brasil, essa lacuna é ainda mais acentuada, os solos do semiárido, localizados 

majoritariamente na região Nordeste, são pouco investigados espectralmente, sobretudo na 

faixa MIR (Santos et al., 2020). A baixa representação da região é clara nas bases de dados 

nacionais, de modo que a biblioteca espectral de solos do Brasil possui apenas 23% de suas 

amostras oriundas do Nordeste, com a maioria concentrada no estado de Pernambuco 

(Mendes et al., 2022), o que não reflete completamente a variedade edáfica da região. 

Diante desse cenário, parte-se da hipótese de que a espectroscopia de reflectância 

do visível ao infravermelho médio pode predizer com precisão em solos do Nordeste 

brasileiro os atributos físico-químicos, como granulometria, salinidade, sodicidade e demais 

propriedades químicas, fornecendo uma alternativa eficiente às análises tradicionais. 

Adicionalmente, espera-se que a modelagem na faixa MIR proporcione ganhos significativos 

na qualidade das predições, em função das interações mais fortes da radiação com os 

constituintes do solo nessa região espectral. 

 

4.1.1 Objetivos 

 

O objetivo principal deste estudo foi quantificar os atributos físico-químicos, bem 

como a salinidade e sodicidade de solos do Nordeste brasileiro utilizando a espectroscopia de 

reflectância na faixa de 350 – 15000 nm e algoritmos de estatística multivariada. 

Como objetivos específicos foram almejados: 
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a) Investigar o potencial da espectroscopia para predizer os seguintes atributos: 

granulometria, nitrogênio, fósforo disponível, potássio, cálcio, magnésio, sódio, 

alumínio, carbono orgânico, pH (H2O), condutividade elétrica, capacidade de troca 

catiônica, soma de bases, saturação por bases e percentagem de sódio trocável;  

b) Quantificar os atributos relacionados à salinidade e sodicidade do solo; 

c) Identificar combinações ótimas de pré-processamentos (reflectância, absorbância e 

suavização) e algoritmos (regressão linear e aprendizado de máquinas) que 

potencializam a predição dos atributos; 

d) Avaliar o desempenho das predições por meio de métricas estatísticas e identificar 

o melhor modelo para cada atributo do solo. 

 

4.2 Material e métodos 

 

Nesta seção são descritas as metodologias empregadas para a análise tradicional e 

espectral do solo, bem como os procedimentos estatísticos aplicados visando à quantificação 

dos atributos físico-químicos. 

 

4.2.1 Seleção das amostras 

 

O estudo foi conduzido no estado do Ceará, região Nordeste do Brasil. O estado 

possui 184 municípios distribuídos em sete mesorregiões. As amostras de solos avaliadas são 

provenientes de 13 municípios cearenses, onde predominam os climas subúmido úmido, 

subúmido seco e semiárido (Figura 47). 
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Figura 47 – Mapa com os municípios do estado do Ceará de coleta dos solos 

 
Fonte: elaborada pela autora. 

 

Foram avaliadas 114 amostras de solos oriundas de 24 pontos, de modo que cada 

ponto correspondeu a um perfil de solo e cada amostra representou um horizonte pedológico. 

Os perfis foram classificados em nove ordens taxonômicas segundo os critérios do Sistema 

Brasileiro de Classificação do Solo (Santos et al., 2025), sendo estas: Argissolo, Cambissolo, 

Gleissolo, Latossolo, Luvissolo, Neossolo, Planossolo, Plintossolo e Vertissolo. Estes solos 

pertencem as classes mais representativas do Nordeste, ocupando cerca de 97,5% da região 

(Souza; Leite; Medeiros, 2021). A classificação pedológica dos perfis até o 4º nível categórico 

(subgrupo), e a identificação dos pontos de coleta estão disponíveis no Apêndice A. 

As amostras de solos avaliadas neste estudo fazem parte do Levantamento de 

reconhecimento de média intensidade dos solos do Estado do Ceará, publicado em 2024, e 

compõem a área 7 do Levantamento. Os materiais de solo foram adquiridos no banco de 

dados do Laboratório de Análises de Solos, Águas, Tecidos e Adubos, que fica localizado no 

Departamento de Ciência do Solo da Universidade Federal do Ceará (UFC). As informações 

referentes à coleta das amostras e os resultados das análises de química úmida foram obtidas 

diretamente desse banco de dados. 
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4.2.2 Análises convencionais de química úmida 

 

As avaliações do solo pelo método convencional foram realizadas no Laboratório 

de Análises de Solos, Águas, Tecidos e Adubos, pela própria equipe técnica do laboratório. 

Para iniciar as análises do solo foi realizado a obtenção da terra fina seca ao ar (TFSA), tendo 

sido as amostras de solo dispostas na sombra e ao ar para secagem, depois moídas e tamisadas 

em peneira com malha de abertura de 2 mm. A partir das amostras de TFSA foram efetuadas 

as avaliações convencionais e de espectroscopia de reflectância. 

As análises de química úmida foram realizadas segundo a metodologia do Manual 

de Métodos de Análise de Solo da Embrapa (Teixeira et al., 2017). Como análise física foi 

avaliada a granulometria pelo método da pipeta, que é uma técnica de determinação das 

partículas primárias do solo a partir da sedimentação dos sólidos.  

Como atributos químicos foram avaliados: nitrogênio total pela técnica de 

oxidação com ácido sulfúrico; o fósforo disponível, potássio e sódio trocáveis foram extraídos 

com Mehlich 1; cálcio, magnésio e alumínio trocáveis foram extraídos com solução de KCl; 

carbono orgânico foi determinado por combustão úmida proposta por Walkley & Black; a 

condutividade elétrica (CE) foi avaliada na pasta de saturação do solo; o pH (H2O – 1:2,5) foi 

determinado em água, com relação solo-água de 1:2,5; a soma de bases (SB) foi calculada 

pela soma de Ca
+2

, Mg
+2

, K
+
 e Na

+
; a capacidade de troca catiônica (T) foi obtida pela soma 

de S, H
+
 e Al

3+
; a saturação de bases (V) foi a partir dos valores de S e de T; e a percentagem 

de saturação por sódio (PST) foi calculada a partir dos valores de Na
+
 e de T. 

 

4.2.3 Análise espectral 

 

A análise de espectroscopia de reflectância foi conduzida pela equipe desse 

estudo, sendo que as avaliações na faixa vis-NIR-SWIR foram executadas no Laboratório de 

Geoprocessamento do Departamento de Engenharia Agrícola, enquanto as análises na faixa 

MIR ocorreram no Laboratório de Química do Departamento de Ciência do Solo. Ambos os 

laboratórios ficam localizado na UFC. 

Para a análise espectral do solo, as amostras de terra fina seca ao ar foram 

submetidas à secagem em estufa com circulação forçada de ar, a uma temperatura de 45 °C 

durante o período de 24 horas, conforme metodologia descrita por Demattê et al. (2014). Essa 

etapa de secagem visa homogeneizar os efeitos da umidade residual do solo e reduzir a 

interferência da água no espectro de reflectância.  
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Na obtenção dos espectros na faixa vis-NIR-SWIR, as amostras secas em estufa 

foram acondicionadas em recipientes de polipropileno preto medindo 5 cm de diâmetro e 1,5 

cm de altura (Figura 48a). As leituras espectrais de reflectância foram realizadas com uma 

sonda de contato (Hi-Brite Contact Probe) acoplada a um espectrorradiômetro FieldSpec Pro 

FR 3 (Analytical Spectral Devices, Boulder, Colorado, USA), que realiza leitura na faixa do 

visível ao infravermelho de ondas curtas (350 – 2500 nm) e possui resolução espectral de 3 

nm e 10 nm reamostrados para 1 nm e um campo de visão de 25° (Figura 48b). 

 

Figura 48 – a) Amostras de solo preparadas para leitura espectral b) Equipamento de 

aquisição dos dados espectrais vis-NIR-SWIR 

 
                         Fonte: elaborada pela autora. 

 

A calibração do equipamento foi realizada com uma placa branca Spectralon, que 

é considerada como padrão de referência com 100% de reflectância. A partir da calibração do 

sensor foi realizado o cálculo do fator de reflectância bidirecional (FRB), que é obtido pela 

razão entre a radiância refletida pela amostra de solo e a radiância refletida pela placa de 

referência. A calibração foi feita a cada 20 minutos com uma nova leitura da placa padrão. 

Foram realizadas três leituras espectrais na superfície da amostra, sendo a amostra rotacionada 

aproximadamente 120° entre cada leitura para obter uma boa representatividade. O valor final 

de reflectância de cada amostra foi obtido com a média aritmética das três leituras realizadas.  

Para a obtenção dos espectros na faixa de infravermelho médio foi realizado uma 

etapa adicional no preparo das amostras, a fim de obter partículas mais finas. Para isso, o solo 

foi triturado em almofariz de ágata, sendo posteriormente as amostras acondicionadas em 

tubos eppendorf e postas para secar em estufa. A leitura no MIR foi realizada usando o 

infravermelho com transformada de Fourier FTIR Cary 630 (Agilent Technologies) equipado 

com módulo de amostragem de reflectância difusa (DRIFTS), com leituras espectrais na faixa 

de 2500 a 15000 nm (4000 a 650 cm
-1

) e resolução espectral ≤ 2 cm
-1 

(Figura 49). 

a b 
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Figura 49 - Equipamento para leitura espectral na faixa MIR 

 
                       Fonte: elaborada pela autora. 

 

Em cada leitura espectral foi utilizado cerca 1 cm
3
 de solo, o qual foi disposto em 

suporte próprio do acessório DRIFTS e inserido no equipamento. A calibração do sensor foi 

realizada antes de cada nova leitura do solo. A placa de referência usada na calibração está 

posicionada na primeira posição do suporte e consiste de um espelho dourado de reflectância 

difusa que auxilia na remoção da radiação de background do espectro As amostras de solo 

foram lidas em triplicata para obter os dados espectrais na faixa MIR, sendo o valor final de 

reflectância de cada amostra obtida pela média simples das três repetições. 

 

4.2.4 Processamento dos dados espectrais 

 

Os dados espectrais de reflectância obtidos nas faixas vis-NIR-SWIR e MIR 

foram submetidos a técnicas de pré-processamentos com o objetivo de remover ruídos e 

aperfeiçoar a interpretação das principais feições, bem como melhorar a estabilidade da 

regressão. Para o pré-processamento dos dados espectrais brutos de reflectância foram 

empregadas às técnicas de conversão dos valores para absorbância (A) e de suavização 

Savitzky-Golay (SG).  

A transformação logarítmica de reflectância (R) para absorbância (A) preserva 

uma correlação linear entre a radiância e as concentrações dos componentes do solo. A técnica 

de filtragem (suavização) Savitzky-Golay é amplamente usada visando à redução do ruído e a 
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diferenciação do sinal (Rizzo et al., 2021). Ressalta-se que aplicação dessa filtragem SG 

resulta na perda das janelas iniciais e finais da faixa espectral analisada. 

 

4.2.5 Estatística descritiva 

 

A análise dos dados produzidos com a metodologia convencional e espectral, bem 

como o pré-processamento dos dados espectrais foi executada no software R versão 

2024.12.0.467 (R Core Team, 2024). A caracterização dos 17 atributos físico-químicos 

estudados foi realizada pela análise de estatística descritiva nos dados, tendo sido avaliada a 

média, mediana, mínimo, máximo, desvio padrão, primeiro e terceiro quartil, assimetria e 

curtose.  

Foi avaliada, ainda, a normalidade dos atributos por meio do teste de hipótese 

Shapiro-Wilk a 5%. Após a realização do teste, diferentes transformações foram aplicadas nos 

atributos físico-químicos avaliados como não normais. As transformações logaritmo de base 

10, potência ao quadrado e raiz quadrada foram empregadas visando obter valores 

normalmente distribuídos.  

 

4.2.6 Modelagem preditiva – Calibração e Validação 

 

Os modelos preditivos dos atributos físico-químicos foram desenvolvidos com os 

espectros brutos (vis-NIR-SWIR e MIR) e com os espectros processados pela conversão para 

absorbância e pela suavização Savitzky-Golay (Figura 50). Para a geração dos modelos de 

quantificação foi usado um algoritmo de regressão linear multivariada - Regressão por 

Mínimos Quadrados Parciais (PLSR), e algoritmos de aprendizado de máquina - Máquina de 

Vetor Suporte com funções Kernel lineares e radiais (SVM-Linear e SVM-Radial) e 

Algoritmo Cubista (CA). 
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Figura 50 - Fluxograma metodológico da predição de atributos físico-químicos do solo 

 
Fonte: elaborada pela autora. 

 

O algoritmo PLSR decompõe as variáveis dependentes e as independentes em 

scores, e pressupõe que há uma relação linear entre os dados avaliados (Meneses et al., 2019). 

O método SVM é empregado em tarefas lineares e não lineares, de modo que quando os 

dados não são linearmente separáveis são usadas funções kernel para transformá-los em um 

espaço de maior dimensão e permitir a separação linear. A função mais adequada comumente 

é escolhida experimentalmente (Cosma et al., 2017). O algoritmo CA é baseado em árvores de 

regressão e aprendizado em conjunto, sendo reconhecido por realizar predições com alta 

precisão e promover a interpretação conveniente do modelo (Coblinski et al., 2020). 

O conjunto de dados dos solos foi dividido uma parte para calibração e outra para 

teste com dados inéditos. Para tanto, foi realizada uma seleção aleatória das amostras de solo, 

tendo sido 70% (80 amostras) selecionadas para calibração e 30% (34 amostras) para o teste 

dos modelos em uma validação independente. Durante a etapa de calibração foi feito uma 

validação dos modelos por meio da validação cruzada k-fold 10 vezes.  

O desempenho da precisão dos modelos de predição com os diferentes espectros e 

algoritmos testados foi avaliado usando as seguintes métricas: coeficiente de determinação 

(R²) (Equação 1), raiz do erro quadrático médio (RMSE) (Equação 2), razão de desempenho 

do desvio (RPD) (Equação 3) e a razão de desempenho para intervalo interquartil (RPIQ) 

(Equação 4). Antes de calcular esses índices, os atributos modelados foram transformados de 
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volta para suas unidades originais. 

 

                                                                                                                  (1) 

 

Em que: Ŷ é o valor predito; Y representa o valor observado; Ȳ é a média dos 

valores observados e n é igual ao número de amostras. 

 

                                                                                                 (2) 

 

Em que: n é igual ao número de amostras; m é o número de amostras usadas para 

predição; yi’-yi são os valores preditos e observados, respectivamente. 

 

                                                                                                                      (3) 

 

Em que:  é o desvio padrão para os valores observados. 

 

                                                                                                                     (4) 

 

Em que: IQ é o intervalo interquartil representado pela diferença entre o valor 

referente ao 3° quartil e o valor referente ao 1º quartil da distribuição dos dados observados. 

Os modelos de predição foram classificados em categorias com base nos valores 

das métricas. A categorização pela R² foi realizada conforme critérios propostos por Terra; 

Demattê; Rossel (2015), sendo: R² > 0,75 - modelos bem ajustados para prever com precisão 

os atributos; 0,50 ≤ R² ≤ 0,75 - modelos justos, mas que podem ser melhorados; e R² < 0,50 - 

modelos não confiáveis e sem capacidade de predição. Para a métrica de RPD, a classificação 

dos modelos seguiu Chang et al. (2001), sendo: RPD > 2,00: modelo excelente; 1,40 < RPD < 

2,00: modelo que necessita de ajustes; e RPD < 1,40: modelo não confiável. 

Adicionalmente, a qualidade dos modelos foi avaliada com base nos valores de 

RPIQ. Essa métrica é amplamente empregada para analisar o desempenho de modelos, sendo 

considerada mais adequada que o RPD para avaliar a qualidade da predição (Bellon-Maurel et 

al., 2010), visto que é comum a não normalidade dos dados do solo mesmo após sua 
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transformação, o que torna mais eficaz utilizar a diferença interquartil como medida de 

dispersão do que o desvio. A classificação dos modelos com base em RPIQ foi feita segundo 

Coblinski et al. (2020): RPIQ > 2,00: modelos excelentes; 1,40 < RPIQ < 2,0: modelos 

razoáveis; RPIQ < 1,4: modelos não confiáveis. 

 

4.3 Resultados e Discussão 

 

A seguir serão apresentados os resultados da estatística descritiva aplicada aos 

dados das análises tradicionais e a modelagem preditiva realizada nas faixas vis-NIR-SWIR e 

MIR. 

 

4.3.1 Estatística descritiva 

 

A Tabela 4 apresenta os resultados da estatística descritiva dos atributos físico-

químicos dos solos, considerando os dados antes de aplicar normalização. Ao avaliar a 

normalidade dos dados por meio do teste de Shapiro-Wilk a 5%, verificou-se que apenas o 

atributo pH apresentou distribuição normal, não demandando qualquer transformação. Para os 

atributos silte, argila, C, N, P, K, Mg, Na, Al, V e PST aplicou-se a transformação por raiz 

quadrada, ao passo que a areia foi transformada pela potência ao quadrado. Nos atributos Ca, 

SB, CTC e CE utilizou-se a transformação logaritmo de base 10. Apesar das transformações 

aplicadas, alguns atributos permaneceram com distribuição não normal. 
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Tabela 4 – Estatística descritiva para os atributos dos 114 solos avaliados sem normalização 

Atributo Média Mediana DP Min. Max. As Cu 1º Q. 3º Q. 
S-W (p-

value) 

Areia (g 

kg-¹) 
710,35 738,00 197,24 100,00 995,00 -0,90 0,72 575,00 848,25 4,33E-05 

Silte (g 

kg-¹) 
149,18 123,00 121,04 2,00 552,00 1,19 1,44 54,00 208,50 3,15E-07 

Argila (g 

kg-¹) 
140,63 112,00 114,25 3,00 430,00 0,88 -0,04 48,75 191,00 1,10E-06 

N (g kg-

¹) 
0,58 0,36 0,82 0,00 4,96 3,28 13,40 0,10 0,65 2,33E-15 

P (mg 

kg-¹) 
8,26 1,90 16,82 0,00 94,60 3,76 14,87 1,0 7,38 3,22E-17 

K 

(cmolc 

kg-¹) 

0,12 0,11 0,07 0,01 0,40 1,14 2,36 0,07 0,16 1,02E-05 

Ca 

(cmolc 

kg-¹) 

2,32 0,89 2,32 0,10 20,87 2,80 7,76 0,30 1,71 9,59E-17 

Mg 

(cmolc 

kg-¹) 

1,78 0,48 1,78 0,00 26,01 4,25 21,35 0,18 1,42 2,21E-18 

C (g kg-

¹) 
4,09 2,70 4,25 0,01 26,76 3,08 12,01 1,80 5,34 2,87E-14 

Al 

(cmolc 

kg-¹) 

0,56 0,17 0,77 0,00 3,45 1,76 2,79 0,00 0,90 8,56E-13 

Na 

(cmolc 

kg-¹) 

0,63 0,07 1,86 0,00 15,75 5,64 39,93 0,04 0,21 3,68E-20 

SB 

(cmolc 

kg-¹) 

4,83 1,64 7,60 0,32 34,57 2,34 4,94 0,66 3,73 6,59E-16 

T (cmolc 

kg-¹) 
6,09 3,10 7,73 0,82 34,88 2,30 4,67 1,93 5,38 1,94E-15 

V (%) 62,04 65,0 26,73 13,00 100,00 -0,21 -1,27 38,0 88,75 1,93E-05 

PST (%) 7,40 2,75 13,36 0,00 68,40 3,02 8,68 1,30 6,40 1,92E-17 

CE (dS 

m-¹) 
0,65 0,14 1,68 0,01 10,15 4,26 19,15 0,08 0,28 7,34E-20 

pH H2O 5,56 5,50 0,84 3,90 8,20 0,00 0,11 6,10 0,42 0,11 
DP: desvio padrão; Min: mínimo; Max: máximo; As: assimetria; Cu: curtose; 1º Q: primeiro quartil; 3º Q: terceiro quartil; S-

W: Teste de normalidade por Shapiro-Wilk.  

Fonte: elaborada pela autora. 

 

Os coeficientes de assimetria e curtose, de natureza adimensional, corroboraram 

os resultados do teste de Shapiro-Wilk. Esses coeficientes são frequentemente usados como 

método alternativo para verificar a distribuição dos dados e sua normalidade, sendo 

considerados normais os dados que possuem valor de assimetria próximo a 0 e curtose em 

torno de 3 (Groeneveld; Meeden, 1984; Santos; Ferreira, 2003). A ausência de normalidade é 
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uma característica comum em variáveis pedológicas, visto que a heterogeneidade natural dos 

solos é alta com uma ampla variação na distribuição dos atributos, ocasionando a falta de 

normalidade e uma distribuição muito assimétrica (Bellon-Maurel et al., 2010). 

Com relação aos valores médios dos atributos avaliados, observou-se quanto à 

fração granulométrica, que houve predominância da fração areia. Este resultado está 

associado à maior representatividade no conjunto de dados avaliados (Apêndice A) da classe 

de Neossolos que apresentam textura arenosa, e da classe de Argissolos, que possuem como 

característica intrínseca a presença de horizonte A com maior teor de areia em relação aos 

horizontes subsuperficiais (Santos et al., 2025).  

No que se refere aos atributos químicos, os solos apresentaram pH 

moderadamente ácido. Os valores médios indicaram elevada capacidade de troca catiônica 

(CTC) e teores altos de magnésio (Mg), concentrações intermediárias de fósforo (P), potássio 

(K), cálcio (Ca), alumínio (Al), saturação por bases (V) e soma de bases (SB), além de valores 

baixos de nitrogênio (N) e carbono orgânico (CO). Embora a lixiviação de bases seja pouco 

expressiva nas condições do Semiárido, a SB é muito variada devido ao material de origem 

dos solos (Souza; Leite; Medeiros, 2021). 

Quanto às características de salinidade e sodicidade, os atributos porcentagem de 

saturação por sódio (PST) e condutividade elétrica (CE) devem atender alguns critérios para a 

classificação dos solos como salinos e/ou sódicos, sendo estes: salinos – CE > 4 dS m
-1

 e PST 

< 15%; sódicos – CE < 4 dS m
-1

 e PST > 15%; e salino‐sódicos – CE > 4 dS m
-1

 e PST > 15% 

(FAO, 2024). Com base nos valores máximos observados para esses atributos, o conjunto de 

solos avaliados enquadra-se em salino-sódico. No entanto, ao se observar os valores médios, 

verifica-se que nenhum dos critérios é atendido, embora a PST exiba valores elevados. 

Esses resultados são justificados pela ocorrência de alguns perfis de solos com 

caráter salino, sódico ou solódico identificados no terceiro e quarto níveis categóricos 

(Apêndice A). Os valores elevados de PST evidenciam que a sodicidade constitui um dos 

principais problemas de degradação dos solos do Nordeste, corroborando a necessidade de 

monitoramento constante a fim de mitigar os prejuízos associados. A maior parte dos 

prejuízos associados ao excesso de sais decorre do efeito deletério do sódio trocável, que 

promove a dispersão de argilas e a degradação da estrutura do solo (Vasconcelos et al., 2013). 

 

4.3.2 Modelagem preditiva com dados espectrais vis-NIR-SWIR 

 

O desempenho dos modelos nas etapas de calibração e validação independente 
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para a predição dos atributos físicos e químicos dos solos, considerando os diferentes tipos de 

pré-processamentos e algoritmos multivariados empregados na faixa do visível ao 

infravermelho de ondas curtas, estão disponíveis nos Apêndices C e D. 

O melhor modelo de predição para cada atributo avaliado foi determinado com 

base nos maiores valores de R², RPD e RPIQ e menores valores de RMSE no conjunto de 

validação com dados inéditos, e pode ser verificado nas figuras a seguir. Nas figuras dos 

gráficos de dispersão, os pontos intimamente alinhados com a linha 1:1 (pontilhada) 

evidenciam a concordância entre os resultados de predições espectrais e as observações 

laboratoriais.  

Para a predição dos atributos físicos (Figura 51), os modelos de areia e argila 

apresentaram a melhor precisão de predição quando modelados com o algoritmo Cubist, a 

partir de espectros convertidos para absorbância. Em contrapartida, a modelagem do silte 

alcançou o melhor desempenho utilizando o algoritmo PLSR associado aos dados espectrais 

suavizados com o filtro Savitzky-Golay (SG). 

 

Figura 51 – Desempenho dos melhores modelos de validação para areia (A), silte (B) e argila 

(C) na faixa vis-NIR-SWIR 

 
Fonte: elaborada pela autora. 
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Ao analisar os modelos de validação dos atributos físicos com dados inéditos, 

constatou-se que a aplicação de técnicas de pré-processamento aos dados brutos foi eficaz em 

melhorar o desempenho preditivo desses atributos. Verificou-se, ainda, que conforme a 

categorização baseada nas métricas de avaliação, os modelos para areia e argila foram 

classificados como excelentes (RPD e RPIQ > 2,00). Em contrapartida, a predição do silte foi 

classificada como razoável necessitando de ajustes no modelo (1,40 < RPD e RPIQ < 2,00), o 

que foi corroborado pelo valor do coeficiente de determinação (0,50 ≤ R² ≤ 0,75). 

Os achados deste estudo estão em consonância com resultados de Coblinski et al. 

(2020) e Costa et al. (2022), os quais ao realizarem a predição da textura do solo com o 

algoritmo Cubist, também observaram maior acurácia na predição de areia e argila, em 

comparação ao modelo de silte. Coblinski et al. (2020) atribuíram o desempenho inferior da 

predição do silte ao fato de sua determinação ser indireta na metodologia convencional, sendo 

obtido por meio do cálculo de diferença entre os teores de argila e areia.  

Os índices de desempenho (R², RPD e RPIQ) obtidos neste estudo para areia e 

argila foram ligeiramente inferiores aos reportados por Terra; Demattê; Rossel (2015) e por 

Demattê et al. (2019). No entanto, apesar das diferenças nos tipos de solos e nas sequências 

metodológicas empregadas, os modelos aqui desenvolvidos foram classificados como 

excelentes, apresentando desempenho compatível com os índices alcançados por esses 

autores. Esse fato reforça que, mesmo diante de condições pedológicas e metodológicas 

distintas, é viável obter predições espectrais confiáveis dos atributos físicos do solo. 

Com relação à predição dos atributos químicos dos solos avaliados, os melhores 

desempenhos preditivos para os elementos minerais carbono orgânico e sódio, foram 

observados com o uso dos dados brutos de reflectância combinados com o algoritmo Cubist e 

a regressão PLSR, respectivamente. Em contraste, a predição do alumínio apresentou maior 

acurácia quando se utilizou o algoritmo máquina de vetor suporte (SVM) com função Kernel 

radial, aliado aos dados espectrais suavizados por SG. A predição percentagem de sódio 

trocável, por sua vez, alcançou o melhor desempenho com o uso do algoritmo Cubist 

associado aos dados suavizados por SG (Figura 52). 
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Figura 52 – Desempenho dos melhores modelos de validação para carbono orgânico (A), 

alumínio (B), sódio (C) e percentagem de sódio trocável (D) na faixa vis-NIR-SWIR 

 
Fonte: elaborada pela autora. 

 

A análise da qualidade dos modelos, com base nas métricas R² e RPD, revelou que 

a predição desses atributos químicos apresentou desempenho razoável, demandando realizar 

ajustes nos modelos. Em contraste, ao se avaliar o RPIQ, observou-se uma variação 

significativa, visto que o modelo de CO passou a ser classificado como excelente e os de Na e 

PST mostraram-se não confiáveis (RPIQ < 1,4). Já a performance da predição de Al manteve-

se dentro da faixa considerada como razoável. 

O modelo obtido para o carbono orgânico superou os desempenhos reportados por 

Terra; Demattê; Rossel (2015) e por Taghdis; Farpoor; Mahmoodabadi (2022) na faixa vis-

NIR-SWIR, no entanto, está alinhado aos resultados de Santos et al. (2020) e Ribeiro et al. 

(2021), com valor de R² superior a 0,70. Vale ressaltar que no trabalhado de Ribeiro et al. 

(2021) foram avaliados apenas duas classes pedológicas, enquanto o presente estudo abrange 

solos de nove classes oriundos da mesma região geográfica, indicando que a maior 

variabilidade pedológica não prejudicou a precisão da modelagem espectral do CO. 

Para a predição do alumínio, o modelo desenvolvido superou o desempenho 
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reportado por Beniaich et al. (2025), que também empregaram o algoritmo SVM com função 

Kernel radial na faixa vis-NIR-SWIR. Além disso, o índice de R² obtido neste estudo foi mais 

elevado que o resultado encontrado por Terra; Demattê; Rossel (2015), contudo, estes autores 

alcançaram maior valor do índice RPIQ, indicando maior precisão do modelo. 

O modelo desenvolvido para o Na apresentou desempenho semelhante ao trabalho 

de O’Rourke et al. (2016), com valor de R² considerado razoável, porém com RPIQ não 

confiável. Ainda assim, o modelo obtido superou os resultados de Zhao et al. (2021) e de 

Salazar et al. (2023), que utilizaram espectros brutos na faixa de 1350 a 2500 nm. De modo 

similar, o modelo de PST obtido superou o desempenho reportado por Lotfollahi et al. (2023), 

que realizaram a predição com o algoritmo Cubist na faixa vis-NIR-SWIR, sendo os valores 

alcançados para RPIQ baixos, em concordância com os resultados deste estudo. 

Ressalta-se que há a escassez de trabalhos na literatura voltados à estimativa 

espectral de sódio e da percentagem de sódio trocável, quando comparado a modelagem de 

outros atributos químicos. Essa limitação pode estar relacionada ao fato desses atributos 

serem rotineiramente analisados apenas em solos da região Semiárida, onde a sodicidade é um 

fator crítico de degradação. Nesse sentido, fica evidente a relevância científica do presente 

estudo, ao contribuir com conhecimento científico para a região.  

Para a predição dos macronutrientes, os melhores modelos de nitrogênio (N) e 

magnésio (Mg), foram obtidos, respectivamente, com os dados brutos de reflectância 

associado com o algoritmo Cubist e a regressão PLSR. Para o fósforo (P), potássio (K) e 

cálcio (Ca), os melhores desempenhos ocorreram com o algoritmo PLSR, sendo a predição de 

fósforo realizada com os espectros suavizados por SG e os demais nutrientes modelados com 

os dados convertidos para valores de absorbância (Figura 53). 
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Figura 53 – Desempenho dos melhores modelos de validação para nitrogênio (A), fósforo (B), 

potássio (C), cálcio (D) e magnésio (E) na faixa vis-NIR-SWIR 

 
Fonte: elaborada pela autora.  

 

A avaliação da qualidade dos modelos dos macronutrientes variou em função das 

métricas consideradas. Pela métrica de RPIQ, apenas a predição do K apresentou desempenho 

razoável (1,40 < RPIQ < 2,00), enquanto os demais elementos foram classificados como não 

confiáveis (RPIQ < 1,40). Com base nos valores de RPD, a modelagem de P foi classificada 

como excelente (RPD > 2,0), com os demais nutrientes apresentando uma predição razoável 

(1,4 ≤ RPD < 2,0). Pela métrica de R², o modelo de Ca teve desempenho insatisfatório (R² < 

0,50), enquanto a predição dos demais nutrientes foi razoável (0,50 ≤ R² < 0,75). 

O resultado da modelagem de nitrogênio corroborou os achados de Clingensmith; 

Grunwald (2022), que também identificaram que o algoritmo Cubist foi o mais adequado para 

a predição desse nutriente. Entretanto, no que se refere ao desempenho da predição, o modelo 

obtido foi inferior aos reportados por Santos et al. (2020), Asrat et al. (2024) e Mondal et al. 

(2025). Essas diferenças podem ser atribuídas a variações nos tipos de solos estudados e nas 

metodologias empregadas, inclusive para a profundidade de amostragem. 

Para as predições de potássio, cálcio e magnésio, os desempenhos obtidos foram 
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inferiores aos encontrados por Tavares et al. (2021). Para o fósforo, potássio, cálcio e 

magnésio, os modelos desenvolvidos superaram os resultados reportados por Terra; Demattê; 

Rossel (2015) e Yu et al. (2023) em termos de R², porém com valores de RPIQ inferiores. 

Essa oposição entre os índices de avaliação evidencia que, embora os modelos preditivos 

estejam capturando bem a variabilidade dos dados, a precisão da predição é limitada e 

deficiente. 

Para a predição dos atributos químicos soma de bases (SB), saturação por bases 

(V) e pH, os melhores modelos foram obtidos com o uso do algoritmo Cubist em combinação 

com os dados suavizados por SG. Em relação à capacidade de troca catiônica (CTC) e a 

condutividade elétrica (CE), os modelos preditivos mais eficazes foram gerados, 

respectivamente, empregando a regressão PLSR aplicada aos dados brutos de reflectância e 

aos dados suavizados por SG (Figura 54). 

 

Figura 54 – Desempenho dos melhores modelos de validação para soma de bases (A), 

capacidade de troca de cátions (B), saturação por bases (C), condutividade elétrica (D) e pH 

(E) na faixa vis-NIR-SWIR 

 
Fonte: elaborada pela autora. 
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A análise do desempenho dos modelos preditivos, com base nos valores do índice 

RPIQ, revelou que a predição de V obteve uma acurácia excelente, enquanto o pH foi 

classificado como razoável. Já os modelos de SB, CTC e CE foram classificados como não 

confiáveis. Quando avaliados com as métricas RPD e R², todos os modelos alcançaram 

desempenho razoável, exceto a predição de pH, que se mostrou não confiável apresentando R² 

inferior a 0,50. 

Os modelos de soma de bases e saturação por bases superaram os resultados 

preditivos de Beniaich et al. (2025) na faixa vis-NIR-SWIR, no entanto, esses autores 

alcançaram um maior valor de RPIQ na predição de SB. Por outro lado, o modelo obtido para 

SB está em concordância com a modelagem realizada por Demattê et al. (2019) para o Ceará, 

porém, com um erro quadrático médio inferior. O modelo desenvolvido para V obteve 

desempenho superior ao reportado por Di Raimo et al. (2022), contudo, foi inferior as 

predições realizadas por Tavares et al. (2021) e Wei et al. (2022), considerando a métrica R². 

Para a predição da capacidade de troca catiônica, o desempenho alcançado 

superou o resultado de Tavares et al. (2021), mas foi inferior às modelagens de Terra; 

Demattê; Rossel (2015) e Taghdis; Farpoor; Mahmoodabadi (2022). Embora o modelo obtido 

tenha apresentado R² superior à predição realizada por Di Raimo et al. (2022), o índice RPIQ 

obtido ficou abaixo do valor reportado por esses autores. 

O modelo desenvolvido para a condutividade elétrica apresentou desempenho 

inferior ao trabalho de Sun et al. (2024). No entanto, corroborando os resultados alcançados 

por esses autores, o valor de RPIQ obtido também foi significativamente menor do que as 

demais métricas, sugerindo limitações na acurácia preditiva desse atributo. Por outro lado, em 

termos das métricas R² e RPD, o modelo apresentou desempenho superior ao relatado por 

Lotfollahi et al. (2023) na predição de CE empregando o algoritmo PLSR. 

Em relação à predição do pH, o modelo obtido foi inferior aos resultados 

encontrados por Clingensmith; Grunwald (2022), Di Raimo et al. (2022) e Sun et al. (2024). 

Embora o modelo desenvolvido tenha apresentado um valor de R² consideravelmente menor 

do que o reportado por Demattê et al. (2019) na predição em solos do Ceará, a métrica obtida 

de RPIQ foi superior, indicando que, apesar da baixa variância explicada, a distribuição dos 

resíduos quanto à variabilidade dos dados permitiu obter uma predição de precisão razoável. 

A análise das métricas obtidas na faixa vis-NIR-SWIR revelou uma relação 

inversa entre a raiz do erro quadrático médio (RMSE) e o coeficiente de determinação (R²), de 

modo que quanto maior a variância explicada, menor o erro. De forma geral, os valores de R² 

seguiram as variações do índice de razão da performance do desvio (RPD), corroborando os 
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achados de Shen et al. (2022). Contudo, o índice da razão de desempenho para intervalo 

interquartil (RPIQ) não seguiu essa tendência, exibindo comportamento distinto na predição 

de Na, P, Ca, Mg, SB, CTC e CE. A ocorrência de divergência nas métricas, observada em 

alguns modelos, indica que a predição apresenta precisão limitada. 

As técnicas de pré-processamento espectral utilizadas foram eficientes em 

melhorar a estabilidade da regressão da maioria dos atributos dos solos, não tendo promovido 

incrementos na predição dos atributos CO, N, Mg, Na e CTC (Apêndices C e D). A conversão 

dos valores espectrais para absorbância melhorou a precisão da modelagem de areia, argila, K 

e Ca, ao passo que a suavização com o filtro Savitzky-Golay foi eficiente em melhorar a 

predição de silte, Al, P, PST, SB, V, pH e CE. 

Corroborando esses resultados, o efeito positivo do pré-processamento sobre o 

desempenho preditivo de atributos do solo é relatado por diversos autores, como em Santos et 

al. (2020), Asrat et al. (2024) e Sun et al. (2024). As técnicas de pré-processamento podem 

melhorar a capacidade de distinção de características espectrais importantes para modelagem 

(Asrat et al., 2024), como a predição da salinidade, por exemplo, em que o tratamento 

espectral destaca de modo eficiente pequenas diferenças nos dados espectrais, auxiliando no 

aumento da sensibilidade da regressão a variações na salinidade do solo (Sun et al., 2024). 

Os algoritmos de regressão PLSR e Cubist foram responsáveis por produzir as 

melhores modelagens da maioria dos atributos avaliados na faixa vis-NIR-SWIR, enquanto o 

algoritmo SVM usando a função Kernel radial alcançou o melhor desempenho somente na 

predição do Al e com a função linear não houve produção de bons modelos. De modo 

semelhante, Di Raimo et al. (2022) observaram que as regressões PLSR e Cubist alcançaram 

destaque entre os métodos de modelagem testados. Por outro lado, Clingensmith; Grunwald 

(2022) alcançaram os melhores resultados com os modelos cubistas, enquanto o PLSR 

produziu previsões ruins. 

 

4.3.3 Modelagem preditiva com dados espectrais MIR 

 

Os resultados dos modelos de calibração e validação independente para a predição 

dos atributos físico-químicos do solo, na faixa do infravermelho médio, estão apresentados 

nos Apêndices E e F. A modelagem foi conduzida a partir da aplicação de diferentes tipos de 

pré-processamentos espectrais combinados a algoritmos multivariados. A melhor predição de 

cada atributo foi definida na validação com dados inéditos com base nos maiores valores de 

R², RPD e RPIQ, bem como os menores valores de RMSE. O desempenho dos melhores 
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modelos pode ser visualizado nas figuras com gráficos de dispersão dispostas a seguir. 

Para os atributos físicos (Figura 55), os melhores modelos para areia e silte foram 

obtidos, respectivamente, com os algoritmos Cubist e PLSR, combinados com dados brutos 

de reflectância. Em contrapartida, a predição de argila apresentou o melhor desempenho com 

o algoritmo SVM com função Kernel radial, associado aos dados espectrais suavizados por 

meio do filtro Savitzky-Golay (SG). 

 

Figura 55 – Desempenho dos melhores modelos de validação para areia (A), silte (B) e argila 

(C) na faixa MIR 

 

Fonte: elaborada pela autora. 

 

A avaliação dos modelos de validação dos atributos físicos revelou desempenho 

excelente para as predições de areia, silte e argila para todas as métricas avaliadas, exibindo 

R² > 0,75, RPD e RPIQ > 2,0. A precisão preditiva desses modelos foi maior na faixa MIR em 

comparação com aquela obtida com o espectro Vis-NIR-SWIR, resultando também em uma 

diminuição expressiva do erro.  

A performance obtida para os atributos físicos superou os resultados reportados 

por Wijewardane et al. (2018) e Di Raimo et al. (2022), estando em consonância com os 
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achados de Terra; Demattê; Rossel (2015) e Mendes et al. (2022) para a predição de areia e 

argila na faixa MIR. De modo semelhante, os modelos desenvolvidos para areia e argila 

apresentaram índices compatíveis aos reportados por Ng et al. (2022) e Beniaich et al. (2025), 

que foram classificados como excelentes, no entanto, a modelagem de silte alcançou 

desempenho superior ao obtido por esses autores. 

No que se referem aos atributos químicos do solo, os melhores resultados para a 

predição do carbono orgânico e sódio foram alcançados por meio do algoritmo Cubist, 

aplicado aos dados espectrais convertidos para absorbância. Por sua vez, os melhores modelos 

preditivos para o alumínio e percentagem de sódio trocável foram obtidos, respectivamente,  

com os dados suavizados com o filtro SG associado aos algoritmos PLSR e SVM com função 

Kernel linear (Figura 56). 

 

Figura 56 – Desempenho dos melhores modelos de validação para carbono orgânico (A), 

alumínio (B) sódio (C) e percentagem de sódio trocável (D) na faixa MIR 

 
Fonte: elaborada pela autora. 

 

A análise da qualidade dos modelos, considerando as métricas R² e RPD, indicou 

acurácia excelente para as predições de CO, enquanto as modelagens de Al e Na apresentaram 
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desempenho razoável (0,50 ≤ R² < 0,75; 1,4 ≤ RPD < 2,0), sugerindo a necessidade de 

aprimoramento. Em contraste, ao se utilizar o índice RPIQ como critério de avaliação, 

observou-se uma mudança na classificação, de modo que a predição de Na passou a 

apresentar desempenho insatisfatório (RPIQ < 1,4), Al passou a ter acurácia excelente, 

enquanto CO mantiver desempenho excelente (RPIQ > 2,0). Já a predição de PST, obteve 

resultado insatisfatório para todas as métricas avaliadas. 

A modelagem de carbono orgânico apresentou desempenho inferior ao reportado 

por Wijewardane et al. (2018), porém, superou o modelo obtido por Mendes et al. (2022). Por 

outro lado, o modelo desenvolvido foi consistente com os resultados encontrados por Santos 

et al. (2020), que modelaram o CO a partir de espectros de absorbância de sete classes de 

solos do Nordeste brasileiro. Esses achados sugerem que o uso de bancos de dados regionais 

com uma ampla diversidade pedológica não compromete a precisão preditiva de CO. 

Embora os modelos obtidos para carbono orgânico e alumínio tenham 

apresentando valores inferiores aos reportados por Ng et al. (2022), o desempenho das 

predições mantiveram-se com nível de acurácia excelente. Além disso, as predições de CO e 

Al estão em concordância com os resultados encontrados por Terra; Demattê; Rossel (2015), e 

superaram os resultados alcançados por Beniaich et al. (2025). 

Para o Na, o desempenho do modelo obtido foi inferior ao relatado por Ng et al. 

(2022), porém, superou os resultados encontrados por Rossel et al. (2008) e Janik; Forrester; 

Rawson (2009). De modo análogo, a predição realizada para a PST apresentou desempenho 

superior ao alcançado por Lotfollahi et al. (2023), ao utilizarem o algoritmo Cubist na faixa 

MIR, sendo o melhor desempenho relatado por esses autores para o modelo baseado na 

distância de Mahalanobis. No entanto, independentemente do modelo empregado, os valores 

de RPIQ foram muito baixos, assim como os obtidos neste estudo, o que indica que a precisão 

da predição para a PST necessita de aprimoramento. 

Em relação aos macronutrientes (Figura 57), os melhores desempenhos preditivos 

para nitrogênio e potássio foram obtidos, respectivamente, com a regressão PLSR aplicada 

aos espectros suavizados pelo filtro SG e com os dados espectrais em absorbância. A predição 

do fósforo foi mais eficaz com o algoritmo SVM de função Kernel linear, associado a 

espectros suavizados com o filtro SG. Para cálcio e magnésio, o melhor ajuste foi obtido com 

o algoritmo SVM de função Kernel radial, utilizando dados em absorbância e os espectros 

suavizados com o filtro SG. 
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Figura 57 – Desempenho dos melhores modelos de validação para nitrogênio (A), fósforo (B), 

potássio (C), cálcio (D) e magnésio (E) na faixa MIR 

 
Fonte: elaborada pela autora. 

 

O desempenho dos modelos para os macronutrientes variou conforme a métrica 

utilizada. Pela métrica de RPIQ, N e K apresentaram desempenho razoável (1,40 < RPIQ < 

2,00), enquanto os modelos dos demais nutrientes foram classificados como de baixa acurácia 

preditiva (RPIQ < 1,40). Por outro lado, pelas métricas de R² e RPD, a predição de P foi 

considerada excelente (R² > 0,75 e RPD > 2,0). Os demais elementos, com exceção de Ca que 

teve desempenho inferior para todas as métricas, foram considerados razoáveis (0,50 ≤ R² ≤ 

0,75; 1,4 ≤ RPD < 2,0). 

A predição de N apresentou desempenho inferior aos modelos de Madari et al. 

(2006) e Wijewardane et al. (2018), porém foi consistente com os resultados de Santos et al. 

(2020), que utilizaram para a predição o mesmo algoritmo e pré-processamento deste estudo. 

Do mesmo modo, a qualidade dos modelos de N e Ca foram inferiores aos obtidos por Garrett 

et al. (2022). Embora a predição de Ca não tenha alcançado desempenho confiável, o melhor 

resultado foi obtido na modelagem com SVM de função Kernel radial, corroborando o 

potencial desse algoritmo, também evidenciado por Beniaich et al. (2025). 
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O desempenho dos modelos desenvolvidos para fósforo e potássio superaram os 

resultados de Wijewardane et al. (2018) em todas as métricas avaliadas. As modelagens de 

fósforo e magnésio também apresentaram R² superiores aos valores reportados por Terra; 

Demattê; Rossel (2015), embora os valores de RPIQ tenham sido inferiores. Em 

contrapartida, os modelos de potássio e magnésio alcançaram desempenho inferior ao 

registrado por Ng et al. (2022). 

Para os atributos soma de bases e capacidade de troca catiônica, os melhores 

modelos foram obtidos com o algoritmo SVM de função Kernel linear, combinado aos dados 

suavizados com o filtro SG. A modelagem da saturação por bases apresentou o melhor 

desempenho com o algoritmo Cubist aplicado aos dados brutos de reflectância. Já os atributos 

condutividade elétrica e pH, alcançaram os melhores resultados preditivos, respectivamente, 

com a regressão PLSR associada aos dados espectrais suavizados com SG, e com os espectros 

convertidos em absorbância (Figura 58). 

 

Figura 58 – Desempenho dos melhores modelos de validação para soma de bases (A), 

capacidade de troca de cátions (B), saturação por bases (C), condutividade elétrica (D) e pH 

(E) na faixa MIR 

 
Fonte: elaborada pela autora. 
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A avaliação dos modelos preditivos com base no índice RPIQ revelou acurácia 

excelente para a predição de V e desempenho razoável para o modelo de pH. Em 

contrapartida, os modelos de SB, CTC e CE apresentaram baixos valores desse índice, sendo 

considerados pouco confiáveis. Por outro lado, quando analisadas as métricas R² e RPD, todos 

os modelos atingiram desempenho razoável, com exceção da predição de CE, cujo 

desempenho foi excelente, confirmando divergência entre as métricas empregadas. 

Os modelos desenvolvidos para SB e CTC apresentaram desempenho inferior aos 

resultados de Terra; Demattê; Rossel (2015). Do mesmo modo, as modelagens de CTC, V e 

pH foram inferiores às reportadas por Garrett et al. (2022), enquanto as predições de CTC e 

pH também ficaram abaixo dos resultados obtidos por Wijewardane et al. (2018) e Beniaich 

et al. (2025). Ressalta-se que, embora os trabalhos citados também tenham avaliado o solo na 

faixa MIR, foram adotadas metodologias distintas e avaliado diferentes classes pedológicas, o 

que contribui para a variação dos resultados apresentados. 

Para a predição da condutividade elétrica, o desempenho obtido superou, em 

termos de R², os valores relatados por Janik; Forrester; Rawson (2009) e Ng et al. (2022), 

contudo apresentou RPIQ inferior. O modelo gerado está alinhado com os achados de 

Lotfollahi et al. (2023) para a modelagem na faixa MIR com o algoritmo PLSR. De modo 

semelhante ao observado nesse estudo, esses autores também relataram valores de RPIQ 

substancialmente menores aos das métricas R² e RPD, indicando que a alta assimetria na 

distribuição dos dados de CE afetou diretamente a precisão preditiva. 

Quando a população analisada no solo possui distribuição muito assimétrica, a 

avaliação da capacidade dos modelos preditivos com base no desvio padrão da população 

torna-se limitada, visto que os valores de RPD obtidos para distribuição normal e log-normal 

não são diretamente comparáveis. Nesse contexto, o índice RPIQ, que é baseado em quartis, 

representa melhor a distribuição da população, uma vez que determina faixas equivalentes de 

dispersão. Em contrapartida, a métrica RPD calculada para distribuições log-normal pode, 

enganosamente, indicar um bom desempenho (Bellon-Maurel et al., 2010). 

Corroborando os resultados obtidos na faixa vis-NIR-SWIR, as técnicas de pré-

processamento espectral mostraram-se eficientes em aumentar o poder preditivo para a 

maioria dos atributos avaliados, com exceção da predição de areia, silte e V (Apêndices E e 

F). A suavização com o filtro Savitzky-Golay promoveu melhorias na predição de argila, Al, 

N, P, Mg, SB, CTC, PST e CE, enquanto a conversão dos valores espectrais para absorbância 

melhorou a precisão da modelagem de CO, K, Ca, Na e pH.  

O algoritmo de regressão PLSR foi responsável por produzir as melhores 
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predições para a maioria dos atributos, comportamento semelhante ao observado na faixa vis-

NIR-SWIR. Contudo, na modelagem realizada na faixa MIR, os algoritmos SVM com função 

Kernel radial e com função linear apresentaram desempenho equivalente algoritmo Cubist. 

Em contraste, Beniaich et al. (2025) relataram que a predição realizada com o SVM-Linear 

apresentou os melhores resultados, enquanto Santos et al. (2020) observaram que os modelos 

SVM e PLSR apresentaram desempenhos preditivos semelhantes. 

  

4.3.4 Melhores modelos preditivos 

 

O desempenho dos modelos de validação com dados espectrais na região do 

infravermelho médio superou as modelagens realizadas na faixa do visível ao infravermelho 

de ondas curtas, tendo em vista que os índices de avaliação (R², RPD e RPIQ) alcançaram os 

maiores valores em mais de 70% dos atributos nessa faixa (Tabela 5). O atributo cálcio não 

foi modelado com confiança em nenhuma das regiões espectrais, pois todos os modelos 

apresentaram R² inferior a 0,50, por isso, seu resultado não foi apresentado na tabela a seguir. 

 

Tabela 5 – Resultado dos melhores modelos de validação por atributo do solo 

Atributo 
Região 

espectral 
Par. Algoritmo 

Tratamento 

espectral 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

Areia MIR 20/9 Cubist Bruto 0,893 52,321 3,095 5,074 

Silte MIR 15 PLSR Bruto 0,830 51,656 2,462 2,817 

Argila MIR 16 SVM radial SG 0,879 38,614 2,922 3,781 

CO MIR 20/0 Cubist Abs 0,800 1,221 2,271 3,182 

N MIR 14 PLSR SG 0,738 0,283 1,984 1,866 

P MIR 1 SVM linear SG 0,773 10,600 2,132 0,689 

K MIR 6 PLSR Abs 0,644 0,046 1,700 1,716 

Mg MIR 32 SVM radial SG 0,638 1,156 1,686 0,865 

Na vis-NIR-SWIR 14 PLSR Bruto 0,623 1,020 1,653 0,255 

Al MIR 7 PLSR SG 0,712 0,352 1,890 2,303 

SB MIR 1 SVM linear SG 0,648 4,387 1,710 0,609 

CTC MIR 1 SVM linear SG 0,616 4,578 1,637 0,412 

V vis-NIR-SWIR 1/9 Cubist SG 0,699 14,995 1,850 3,368 

pH MIR 10 PLSR Abs 0,553 0,576 1,518 1,822 

PST vis-NIR-SWIR 10/9 Cubist SG 0,673 9,095 1,775 0,651 

CE MIR 9 PLSR SG 0,832 0,188 2,478 0,785 
Par: parâmetros do modelo; SG: Suavização por Savitzky-Golay; Abs: absorbância; R² valid.: coeficiente de determinação da 

validação; RMSE valid.: raiz do erro quadrático médio da validação; RPD: razão da performance do desvio; RPIQ: razão de 
desempenho para intervalo interquartil. 

Fonte: Elaborado pela autora. 
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As predições realizadas na faixa do visível ao infravermelho de ondas curtas 

foram superiores às obtidas com dados espectrais do infravermelho médio apenas para o 

sódio, percentagem de saturação por sódio e saturação por bases. A menor precisão preditiva 

observada na região vis-NIR-SWIR está associada à baixa absorção nessa faixa que apresenta 

fraca assinatura espectral, se relacionando somente com os tons e combinações das bandas 

moleculares fundamentais presentes no MIR (Ng et al., 2019). 

O predomínio de melhores resultados com dados MIR, em comparação a predição 

no vis-NIR-SWIR, também foi relatado por Terra; Demattê; Rossel (2015), Ng et al. (2019) e 

Beniaich et al. (2025) para atributos físicos e químicos do solo, por Terra; Rossel; Demattê 

(2019) para carbono e por Santos et al. (2020) para modelagem de carbono e nitrogênio. Em 

contraste, Di Raimo et al. (2022) observaram que o espectro fundido vis-NIR-SWIR + MIR 

apresentou o melhor desempenho, seguido do vis-NIR-SWIR, enquanto os modelos 

exclusivos com a faixa MIR alcançaram resultados inferiores.  

Entre os atributos modelados, destacaram-se areia, silte, argila, carbono orgânico, 

alumínio e saturação por bases, que apresentaram acurácia classificada como excelente. 

Embora as predições de Al e V tenham exibido valores de R² indicativos de desempenho 

razoável, os altos valores de RPIQ demonstram a boa precisão preditiva dos modelos. Para os 

demais atributos, a qualidade preditiva foi considerada razoável, em razão da divergência 

entre as métricas de avaliação, pois, enquanto R² e RPD variaram de excelente a razoável, os 

valores de RPIQ foram, em sua maioria, mais baixos, situando-se entre as classes de razoável 

e não confiável. 

Os baixos valores de RPIQ na modelagem decorrem das características de 

distribuição dos dados. Para Clingensmith; Grunwald, (2022) os menores valores dessa 

métrica são justificados pelo alto grau de assimetria e curtose dos dados. De modo 

complementar, Ng et al. (2022) observaram existir uma relação log-linear com o intervalo 

interquartil (IQR), assim, variáveis que apresentam IQR < 1 tendem a ter menores valores de 

RPIQ e baixa precisão preditiva. 

O bom desempenho preditivo da areia, silte, argila e carbono orgânico em todas as 

faixas espectrais avaliadas, é resultado de suas propriedades intrínsecas, que constituem 

relações espectrais de primeira ordem. Tais atributos afetam diretamente o espectro do solo, 

alterando as intensidades de reflectância e as características de absorção (Terra et al., 2021). 

Por sua vez, o melhor desempenho observado para esses atributos na região MIR é decorrente 

da forma de interação entre a radiação eletromagnética e os grupos funcionais dos compostos 

minerais e orgânicos do solo, predominando as vibrações fundamentais nessa faixa, o que 
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torna a resposta espectral mais expressiva (Beniaich et al., 2025). 

O alumínio e a saturação por bases, apesar de não alterarem diretamente o 

espectro por possuírem relação espectral de segunda ordem, puderam ser modelados com 

precisão na faixa MIR e vis-NIR-SWIR, respectivamente. Os atributos com relação espectral 

de segunda ordem não apresentam características de absorção nem modificam diretamente a 

intensidade de reflectância. Contudo, como geralmente estão adsorvidos ou dependem de 

grupos funcionais de compostos minerais e orgânicos, podem ser previstos por meio de sua 

correlação com os atributos de primeira ordem (Terra et al., 2021).  

Sob essa perspectiva, Terra; Demattê; Rossel (2015) observaram que propriedades 

do solo indicativas de acidez, como Al e pH, podem ser estimadas pela sua correlação 

significativa com o conteúdo de carbono orgânico, o qual apresenta forte interação com a 

região MIR. Em consonância com esses achados, no presente estudo o carbono orgânico, 

alumínio trocável e pH apresentaram as melhores predições na faixa espectral MIR. O 

resultado obtido reforça que os atributos relacionados à acidez foram modelados por previsões 

de segunda ordem a partir de sua relação com o CO. 

Ainda nessa perspectiva, os macronutrientes são preditos a partir da correlação 

entre o elemento avaliado e os atributos de primeira ordem (Rizzo et al., 2021). Os nutrientes 

Ca, Mg e K são normalmente estimados em função da sua covariação com as propriedades 

mineralógicas (Chang et al., 2001). O N, por sua vez, é modelado pela sua alta correlação 

com o conteúdo de carbono, enquanto o P é associado tanto a mineralogia da argila quanto ao 

conteúdo de matéria orgânica (Terra et al., 2021).  

Embora exista grande interesse no uso da espectroscopia de reflectância para 

prever macronutrientes e atributos relacionados à fertilidade química do solo, a literatura 

evidencia resultados muito variáveis (Terra et al., 2021). Em consonância, neste estudo a 

predição dos macronutrientes apresentou desempenho variado, com os modelos de N e K 

alcançando os melhores valores das métricas de ajuste, enquanto o P e Mg mostraram 

resultados contrastantes para as métricas. O mesmo comportamento foi observado para o Na, 

também cátion trocável, sugerindo tratar-se de uma previsão de segunda ordem, associada 

com as propriedades mineralógicas. 

As predições de CE e PST foram classificadas como de terceira ordem, por 

estarem relacionadas à atributos de segunda ordem. A condutividade elétrica do solo está 

ligada ao acúmulo de sais solúveis em água, como Na, Ca e Mg, enquanto a percentagem de 

sódio trocável possui relação direta com os valores de Na e CTC, sendo, portanto, 

influenciada pela composição catiônica do solo. Os cátions Ca e Mg desempenham papel 
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expressivo na formação dos carbonatos e na estrutura dos argilominerais do tipo 2:1, os quais 

afetam diretamente o espectro do solo (Lotfollahi et al., 2023). 

Considerando o desempenho razoável dos modelos de CE e PST, acredita-se que 

ajustes metodológicos, como a aplicação de diferentes algoritmos e a ampliação do conjunto 

de dados, possam aumentar a precisão preditiva. Di Raimo et al. (2022) destacaram que 

acréscimos na base de dados e na amplitude dos valores dos atributos podem promover 

ganhos significativos no desempenho dos modelos, especialmente na etapa de validação. 

Assim, tais ajustes metodológicos não devem ser negligenciados, sobretudo diante da 

escassez de estudos espectrais desses atributos na faixa do MIR, reforçando a importância de 

pesquisas que avancem nessa direção. 

Com relação aos algoritmos de regressão avaliados, a regressão PLSR foi a mais 

eficiente, produzindo os melhores modelos para sete atributos (silte, N, K, Na, Al, pH e CE), 

enquanto os métodos de aprendizado de máquina, apresentaram eficiência ligeiramente 

menor, tendo os três algoritmos testados (SVM radial, SVM linear e Cubist) promovido os 

melhores modelos para os demais atributos. Esses resultados contrastam com os relatados por 

Dangal et al. (2019), que observaram superioridade do algoritmo Cubist em relação à 

regressão PLSR na predição de atributos do solo em uma biblioteca nacional, tendo o Cubist 

sido ligeiramente superior a outros métodos de aprendizado de máquina. 

É importante destacar que nenhum algoritmo pode ser considerado o melhor, de 

modo que a sua eficiência depende do conjunto de dados e da região especificada (Mondal et 

al., 2025). No presente estudo, como o conjunto de dados avaliado era relativamente pequeno 

e oriundo de uma mesma região geográfica, acredita-se que não havia predomínio de relações 

muito complexas entre os atributos do solo e os dados espectrais. Nesses casos em que as 

relações tendem a ser mais simples, o algoritmo PLSR pode obter bons resultados preditivos. 

A regressão PLSR é apropriada para a predição com conjunto de dados 

relativamente homogêneo e com relação linear, entretanto, quando se trata de dados 

heterogêneos seu desempenho é limitado, sendo necessário usar técnicas mais complexas e 

não lineares, como os métodos de aprendizado de máquina (Shen et al., 2022). Nessas 

circunstâncias, os algoritmos Cubist e SVM podem produzir bons resultados, uma vez que 

capturam tanto relações lineares quanto não lineares, além de apresentarem menor 

sensibilidade a valores discrepantes (Clingensmith; Grunwald, 2022; Beniaich et al., 2025). 

No que se refere à eficiência dos métodos de pré-processamento, a suavização 

com o filtro Savitzky-Golay destacou-se como a técnica mais eficaz, resultando nos melhores 

desempenhos para a maioria dos atributos avaliados. Em contrapartida, os dados de 
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reflectância bruta e os convertidos em absorbância proporcionaram ganhos mais restritos, 

promovendo melhorias em um menor número de atributos. Diferentemente dos resultados 

obtidos, Santos et al. (2020) relataram que, dentre os sete tipos de pré-processamento 

avaliados, a técnica de Savitzky-Golay apresentou o menor desempenho. Esses achados 

ratificam que não há uma técnica de processamento universalmente aplicável. 

Considerando que apenas a modelagem de cálcio apresentou desempenho não 

confiável, sendo classificada como incapaz de gerar predição precisa, entende-se que a adoção 

de outras abordagens metodológicas pode melhorar a precisão preditiva dos modelos com 

desempenho entre razoável e excelente. Nesse sentido, as previsões classificadas como 

razoáveis podem ser melhoradas por meio de ajustes nos dados de calibração e do uso de 

modelos estatísticos mais robustos; contudo, os modelos enquadrados na faixa de não 

confiável, provavelmente, não apresentam potencial de melhora (Chang et al., 2001). 

Nessa perspectiva, o aumento da base de dados com adição de amostras da região 

estudada e a estratificação dos dados considerando características pedológicas ou espectrais 

podem ser abordagens promissoras, conforme foi relatado por Wijewardane et al. (2018). Os 

autores observaram que a estratificação das amostras pedológicas se embasando no horizonte 

ou na ordem de solo é uma estratégia eficaz para melhorar o desempenho preditivo. 

 

4.4 Conclusões 

 

Os resultados obtidos neste estudo validam a hipótese proposta de que a 

espectroscopia de reflectância do visível ao infravermelho médio (vis-MIR) é capaz de 

predizer com precisão os atributos físico-químicos de solos do Nordeste brasileiro, 

constituindo uma alternativa eficiente aos métodos tradicionais de análise do solo. O atributo 

cálcio apresenta-se como exceção, pela obtenção de modelos sem confiabilidade em todas as 

faixas avaliadas. 

Adicionalmente, confirma-se o ganho preditivo da faixa do infravermelho médio 

para a maioria dos atributos avaliados, evidenciado pelo aumento dos valores das métricas de 

R², RPD e RPIQ. As interações fundamentais entre a radiação e os constituintes do solo na 

faixa MIR resultam na melhoria da variabilidade explicada e da precisão preditiva dos 

modelos, corroborando a conjectura do maior potencial preditivo desta região do espectro. 

O estudo demonstra que o desempenho dos modelos é fortemente influenciado 

pelas técnicas quimiométricas adotadas. Assim, a aplicação de técnicas de pré-processamento, 

especialmente a suavização Savitzky-Golay, representa uma etapa fundamental para extrair 
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informações importantes e melhorar a qualidade das regressões. Além disso, constata-se que o 

tipo de algoritmo de regressão tem grande impacto, evidenciando que técnicas consolidadas, 

como a regressão por mínimos quadrados parciais, podem apresentar desempenho equivalente 

ou superior aos métodos de aprendizado de máquina mais complexos. 

Por fim, a predição da salinidade e sodicidade por meio da quantificação da 

condutividade elétrica e da percentagem de sódio trocável, representam um avanço 

significativo, dada a escassez de estudos de espectroscopia, principalmente na faixa do MIR, 

dedicadas a estes atributos. O desempenho razoável obtido nos modelos abre espaço para 

novas investigações que visem melhorar a precisão preditiva, evidenciando o potencial de 

utilização da espectroscopia de reflectância como técnica rápida e eficiente para o 

monitoramento de solos susceptíveis à degradação. 
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5 CONSIDERAÇÕES FINAIS 

 

Os resultados obtidos ratificam o potencial da espectroscopia de reflectância como 

uma ferramenta alternativa e eficiente para a análise pedológica. Corroborando as hipóteses 

propostas, esta técnica demonstra capacidade para caracterizar o comportamento espectral e 

os atributos dos solos do Nordeste brasileiro, bem como para realizar predições dos atributos 

de forma confiável. Nesse contexto, as avaliações qualitativas e quantitativas dos dados 

espectrais mostram-se complementares, configurando uma metodologia robusta para a 

caracterização dos solos, especialmente em áreas extensas e heterogêneas, como o Nordeste. 

Os solos avaliados caracterizam-se pelos elevados teores de areia, pela presença 

de minerais primários e secundários menos intemperizados e pela ocorrência frequente de 

carbonatos. Estas características diferenciam os solos do Nordeste daqueles de regiões 

tropicais úmidas e influenciam diretamente o comportamento espectral. Tais aspectos 

refletem-se na alteração da intensidade de reflectância e na presença de feições de absorção 

específicas nas curvas espectrais, observadas, principalmente, nos horizontes subsuperficiais, 

os quais possuem relevância diagnóstica para a classificação dos solos.  

Além disso, os solos do Nordeste destacam-se pela alta concentração de sais, o 

que lhes confere características de salinidade e sodicidade. Embora tais atributos não sejam 

identificáveis no espectro, a aplicação da técnica de classificação não supervisionada 

possibilita a identificação de grupos de amostras com estas características, sobretudo quando 

usado dados da faixa do infravermelho médio. Resultado que é inovador para a caracterização 

dos solos desta região. 

O acúmulo de sais observado em muitos dos perfis de solos analisados evidencia a 

expressiva ocorrência da salinidade e sodicidade na região Nordeste, corroborando a 

susceptibilidade desses solos à degradação. Assim, técnicas com potencial para avaliar essas 

características de forma rápida e de baixo custo devem ser priorizadas. Nessa perspectiva, as 

análises espectrais configuram-se como uma ferramenta promissora, uma vez que os 

resultados obtidos neste estudo já evidenciam desempenho razoável. Portanto, recomenda-se 

o desenvolvimento de novas pesquisas visando aprimorar o desempenho da modelagem 

espectral para a predição da salinidade e sodicidade. 
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APÊNDICE A - CLASSIFICAÇÃO DOS SOLOS E IDENTIFICAÇÃO DO PONTO DO 

PERFIL NO LEVANTAMENTO DOS SOLOS DO ESTADO DO CEARÁ 

 

Classe (subgrupo) Subordem 
Nº. 

Perfil 
Cidade 

Nº. 

Campo 

NEOSSOLO FLÚVICO Psamítico típico RY 1 Caucaia 7P-123C 

NEOSSOLO QUARTZARÊNICO Órtico típico RQ 2 Acaraú 7P-02P 

PLANOSSOLO NÁTRICO Órtico típico SN 3 Miraíma 7P-09P 

LUVISSOLO HÁPLICO Pálico abrúptico TX 4 Miraíma 7P-011P 

ARGISSOLO ACINZENTADO Eutrófico típico PAC 5 Itarema 7P-016P 

ARGISSOLO AMARELO Distrófico típico PA 6 Amontada 7P-17P 

NEOSSOLO FLÚVICO Sódico típico RY 7 Amontada 7P-018P 

GLEISSOLO SÁLICO Sódico típico GZ 8 Amontada 7P-019P 

ARGISSOLO AMARELO Distrocoeso solódico PA 9 Itapipoca 7P-20P 

PLANOSSOLO NÁTRICO Órtico mésico SN 10 Itapipoca 7P-023P 

CAMBISSOLO HÁPLICO Tb Eutrófico típico CX 11 Itapipoca 7P-28P 

ARGISSOLO VERMELHO-AMARELO Distrófico 

arênico 
PVA 12 Amontada 7P-34P 

NEOSSOLO QUARTZARÊNICO Hidromórfico típico RQ 13 Paracuru 7P-50P 

LATOSSOLO AMARELO Distrófico psamítico LA 14 Trairi 7P-40P 

NEOSSOLO FLÚVICO Ta Eutrófico solódico RY 15 Paraipaba 7P-46P 

VERTISSOLO EBÂNICO Sódico salino VE 16 Paraipaba 7P-49P 

PLANOSSOLO NÁTRICO Órtico mésico SN 17 Caucaia 7P-118C 

ARGISSOLO VERMELHO-AMARELO Distrófico 

arênico 
PVA 18 Cruz 7P-59P 

ARGISSOLO VERMELHO Distrófico nitossólico PV 19 Maranguape 7P-111C 

CAMBISSOLO HÁPLICO Tb Distrófico saprolítico CX 20 Massapê 7P-85P 

LUVISSOLO CRÔMICO Órtico abrúptico TC 21 Massapê 7P-72P 

PLANOSSOLO HÁPLICO Eutrófico típico SX 22 Massapê 7P-74P 

NEOSSOLO LITÓLICO Eutrófico típico RL 23 Acaraú 7P-80P 

PLINTOSSOLO ARGILÚVICO Eutrófico 

petroplíntico 
FT 24 Marco 7P-88P 
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APÊNDICE B – ESTATÍSTICA DESCRITIVA POR CLASSE DE SOLO  

 
Parâmetros 

estatísticos 

Areia Silte Argila K Ca Mg Na N C CE PST pH 

g kg-¹ cmolc kg-¹ g kg-¹ dS m-¹ % (H2O) 

   ARGISSOLO      

Média 759,2 86,3 153,8 0,1 0,5 0,3 0,1 0,6 4,9 0,2 3,7 5,0 

Desvio Padrão 118,5 65,9 114,3 0,1 0,4 0,3 0,1 5,1 1,0 0,2 2,7 0,6 

Mínimo 528,0 4,0 13,0 0,0 0,1 0,0 0,0 0,0 0,1 0,0 0,0 4,2 

Máximo 919,0 242,0 429,0 0,3 1,6 1,9 0,2 5,0 26,8 0,9 10,2 6,4 

Mediana 787,0 67,0 102,0 0,1 0,5 0,2 0,1 0,4 3,3 0,2 3,5 5,0 

1º Quartil 633,0 45,0 67,0 0,1 0,2 0,1 0,1 0,1 2,2 0,1 1,8 4,7 

3º Quartil 865,0 100,0 197,0 0,2 0,7 0,3 0,1 0,5 5,8 0,2 5,0 5,2 

CAMBISSOLO 

Média 659,7 207,6 133,2 0,1 0,9 0,5 0,1 0,9 5,9 0,1 2,1 5,1 

Desvio Padrão 107,7 78,2 45,0 0,1 0,5 0,2 0,0 0,9 6,1 0,1 1,2 0,9 

Mínimo 422,0 162,0 59,0 0,1 0,3 0,2 0,0 0,1 1,8 0,1 0,5 3,9 

Máximo 767,0 403,0 197,0 0,2 1,7 0,9 0,1 3,3 20,4 0,3 3,8 5,9 

Mediana 699,0 173,0 122,0 0,2 0,8 0,5 0,1 0,6 3,0 0,1 2,5 5,5 

1º Quartil 657,0 172,0 113,0 0,1 0,7 0,4 0,0 0,5 2,2 0,1 0,9 4,1 

3º Quartil 708,0 189,0 176,0 0,2 1,2 0,7 0,1 1,0 6,0 0,2 3,0 5,6 

GLEISSOLO 

Média 334,6 415,4 250,2 0,1 3,2 4,6 3,2 0,1 2,1 5,1 39,1 6,6 

Desvio Padrão 278,2 178,4 104,6 0,1 3,7 4,5 0,6 0,2 2,3 3,9 19,2 1,0 

Mínimo 100,0 187,0 105,0 0,0 0,9 1,5 2,2 0,0 0,0 0,4 8,3 5,5 

Máximo 708,0 552,0 356,0 0,3 9,7 12,2 3,7 0,5 5,6 9,2 59,1 7,6 

Mediana 203,0 537,0 260,0 0,1 1,6 2,2 3,4 0,0 2,1 4,1 40,6 6,8 

1º Quartil 110,0 257,0 191,0 0,0 1,3 2,1 3,3 0,0 0,0 3,0 37,3 5,6 

3º Quartil 552,0 544,0 339,0 0,1 2,4 5,1 3,5 0,2 2,9 9,1 50,3 7,3 

LATOSSOLO 

Média 844,8 38,8 116,8 0,1 0,2 0,1 0,0 0,5 3,7 0,2 2,2 5,5 

Desvio Padrão 36,2 2,6 36,0 0,0 0,0 0,0 0,0 0,4 2,0 0,1 0,8 0,3 

Mínimo 815,0 35,0 60,0 0,1 0,1 0,0 0,0 0,3 2,1 0,1 0,8 5,0 

Máximo 900,0 42,0 148,0 0,2 0,2 0,1 0,0 1,3 7,0 0,4 2,8 5,7 

Mediana 827,0 39,0 134,0 0,1 0,2 0,1 0,0 0,4 3,4 0,1 2,4 5,5 

1º Quartil 819,0 38,0 103,0 0,1 0,2 0,1 0,0 0,3 2,3 0,1 2,4 5,5 

3º Quartil 863,0 40,0 139,0 0,2 0,2 0,1 0,0 0,5 3,8 0,2 2,8 5,6 

           Continua... 
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Parâmetros 

estatísticos 

Areia Silte Argila K Ca Mg Na N C CE PST pH 

g kg-¹ cmolc kg-¹ g kg-¹ dS m-¹ % (H2O) 

LUVISSOLO 

Média 517,1 275,9 207,5 0,2 11,3 8,6 0,2 1,0 6,8 0,2 1,4 5,7 

Desvio Padrão 109,2 34,6 108,1 0,1 3,5 9,4 0,2 1,6 7,2 0,1 1,0 0,5 

Mínimo 336,0 230,0 53,0 0,1 6,9 2,1 0,1 0,1 2,3 0,1 0,2 5,0 

Máximo 717,0 319,0 430,0 0,4 16,0 26,0 0,4 4,8 24,1 0,4 2,8 6,2 

Mediana 523,0 282,5 189,0 0,1 12,4 3,5 0,3 0,4 4,4 0,1 1,5 5,8 

1º Quartil 486,0 244,8 170,0 0,1 8,0 2,7 0,1 0,2 3,1 0,1 0,3 5,3 

3º Quartil 545,5 301,0 228,2 0,2 13,5 10,9 0,4 1,0 6,0 0,2 2,0 6,0 

NEOSSOLO 

Média 824,3 114,1 61,9 0,1 1,1 0,8 0,2 0,4 2,5 0,3 5,6 6,0 

Desvio Padrão 160,6 108,6 59,5 0,1 0,8 0,7 0,6 0,5 2,3 0,7 10,0 0,8 

Mínimo 485,0 2,0 3,0 0,0 0,1 0,1 0,0 0,0 0,6 0,0 0,7 4,8 

Máximo 995,0 367,0 225,0 0,2 3,2 3,1 3,6 2,2 10,0 4,6 54,6 7,2 

Mediana 902,0 74,0 37,0 0,1 1,0 0,6 0,1 0,2 1,4 0,1 2,0 6,1 

1º Quartil 692,5 20,0 18,0 0,0 0,4 0,4 0,0 0,1 1,1 0,1 1,5 5,7 

3º Quartil 960,5 203,5 101,0 0,1 1,4 1,2 0,1 0,4 2,9 0,2 4,5 6,5 

PLANOSSOLO 

Média 712,7 151,1 136,7 0,1 3,8 1,9 1,0 0,5 3,3 0,7 12,0 5,4 

Desvio Padrão 147,4 68,0 125,7 0,1 3,8 1,9 1,0 0,5 3,3 0,7 18,95 5,4 

Mínimo 467,0 57,0 4,0 0,1 0,1 0,0 0,0 0,0 0,7 0,1 0,2 4,2 

Máximo 939,0 386,0 404,0 0,2 20,9 9,1 7,0 1,4 7,6 3,4 68,4 6,8 

Mediana 751,0 145,0 99,0 0,1 0,9 0,9 0,2 0,5 2,6 0,2 4,1 5,1 

1º Quartil 579,0 114,0 22,0 0,1 0,4 0,3 0,0 0,2 2,1 0,1 0,9 5,0 

3º Quartil 822,5 167,5 252,0 0,1 3,0 1,8 1,5 0,7 4,2 0,9 13,7 5,8 

PLINTOSSOLO 

Média 665,8 87,5 247,8 0,1 1,3 1,1 0,1 1,2 6,6 0,1 1,2 5,1 

Desvio Padrão 136,8 19,2 128,7 0,0 0,3 0,1 0,0 1,0 6,5 0,0 0,5 0,5 

Mínimo 547,0 69,0 100,0 0,1 1,1 0,9 0,0 0,4 0,7 0,0 0,6 4,6 

Máximo 814,0 114,0 374,0 0,2 1,7 1,2 0,1 2,4 15,2 0,1 1,7 5,6 

Mediana 651,0 83,5 258,5 0,1 1,2 1,1 0,0 1,0 5,3 0,1 1,3 5,1 

1º Quartil 550,8 77,25 161,5 0,1 1,1 1,0 0,0 0,4 2,1 0,0 0,9 4,8 

3º Quartil 766,0 93,75 344,8 0,1 1,3 1,2 0,1 1,7 9,8 0,1 1,6 5,4 

VERTISSOLO 

Média 308,0 349,8 342,5 0,3 5,9 8,4 6,2 0,9 5,5 4,0 23,6 6,9 
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Parâmetros 

estatísticos 

Areia Silte Argila K Ca Mg Na N C CE PST pH 

g kg-¹ cmolc kg-¹ g kg-¹ dS m-¹ % (H2O) 

Desvio Padrão 122,2 51,5 75,1 0,1 0,8 3,1 6,8 0,7 3,0 4,4 19,5 1,0 

Mínimo 208,0 273,0 256,0 0,2 4,7 5,0 0,4 0,2 2,0 0,4 3,4 5,9 

Máximo 472,0 381,0 414,0 0,4 6,5 12,0 15,8 1,9 9,1 10,2 45,6 8,2 

Mediana 276,0 372,5 350,0 0,2 6,2 8,2 4,4 0,8 5,6 2,7 22,6 6,8 

1º Quartil 218,5 343,5 292,0 0,2 5,8 6,4 2,0 0,5 4,1 1,0 9,4 6,4 

3º Quartil 365,5 378,8 400,5 0,3 6,3 10,1 8,6 1,2 7,0 5,8 36,8 7,4 

           conclusão 
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APÊNDICE C - RESULTADO DA CALIBRAÇÃO E VALIDAÇÃO DOS MODELOS 

PREDITIVOS PARA OS ATRIBUTOS FÍSICOS COM ESPECTROS VIS-NIR-SWIR 

Algoritmo 
Tratamento - dados 

espectrais 
R² calib. 

RMSE 

calib. 
R² valid. 

RMSE 

valid. 
RPD RPIQ 

Areia (g/kg) (DP = 161,953) 

PLSR 

Bruto 0,490 148,959 0,609 99,761 1,623 2,660 

Abs 0,556 139,092 0,627 97,464 1,662 2,724 

SG 0,475 151,158 0,649 94,482 1,714 2,810 

SVM - radial 

Bruto 0,505 146,850 0,467 116,441 1,391 2,280 

Abs 0,519 144,642 0,478 115,240 1,405 2,304 

SG 0,503 147,032 0,468 116,411 1,391 2,281 

SVM - linear 

Bruto 0,602 131,548 0,567 105,015 1,542 2,528 

Abs 0,739 106,550 0,625 97,685 1,658 2,718 

SG 0,543 141,038 0,646 94,970 1,705 2,796 

Cubist 

Bruto 0,507 146,454 0,627 97,505 1,661 2,723 

Abs 0,647 123,967 0,776 75,471 2,146 3,518 

SG 0,634 126,290 0,676 90,765 1,784 2,925 

Silte (g/kg) (DP = 127,192) 

PLSR 

Bruto 0,509 82,903 0,602 79,055 1,609 1,840 

Abs 0,620 72,964 0,602 79,071 1,609 1,840 

SG 0,496 84,045 0,614 77,860 1,634 1,869 

SVM - radial 

Bruto 0,538 80,407 0,086 119,830 1,060 1,214 

Abs 0,262 101,636 0,166 114,453 1,110 1,270 

SG 0,256 102,091 0,176 113,759 1,118 1,279 

SVM - linear 

Bruto 0,667 68,246 0,442 93,633 1,358 1,554 

Abs 0,748 59,396 0,516 87,171 1,459 1,669 

SG 0,610 73,882 0,522 86,592 1,469 1,680 

Cubist 

Bruto 0,540 80,228 0,451 92,856 1,370 1,567 

Abs 0,473 85,948 0,309 104,139 1,221 1,397 

SG 0,496 84,053 0,353 100,799 1,262 1,443 

Argila (g/kg) (DP = 112,820) 

PLSR 

Bruto 0,654 67,334 0,650 65,740 1,716 2,221 

Abs 0,698 62,890 0,753 55,208 2,044 2,645 

SG 0,705 62,205 0,692 61,665 1,830 2,368 

SVM - radial 

Bruto 0,728 59,655 0,630 67,582 1,669 2,160 

Abs 0,710 61,669 0,628 67,771 1,665 2,154 

SG 0,759 56,254 0,621 68,433 1,649 2,133 

SVM - linear 

Bruto 0,739 58,432 0,759 54,608 2,065 2,674 

Abs 0,845 45,114 0,734 57,305 1,969 2,548 

SG 0,697 63,007 0,755 55,037 2,050 2,653 

Cubist 

Bruto 0,635 69,186 0,783 51,769 2,179 2,820 

Abs 0,728 59,703 0,831 45,657 2,471 3,198 

SG 0,755 56,687 0,731 57,686 1,956 2,531 
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APÊNDICE D - RESULTADO DA CALIBRAÇÃO E VALIDAÇÃO DOS MODELOS 

PREDITIVOS PARA OS ATRIBUTOS QUÍMICOS COM ESPECTROS VIS-NIR-

SWIR 

Algoritmo 
Tratamento –  

dados espectrais 
R² calib. 

RMSE 

calib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

Carbono orgânico (g/kg) (DP = 2,772) 

PLSR 

Bruto 0,797 2,127 0,716 1,456 1,904 2,669 

Abs 0,790 2,162 0,614 1,698 1,633 2,288 

SG 0,770 2,261 0,708 1,475 1,879 2,633 

SVM - 

radial 

Bruto 0,736 2,421 0,390 2,134 1,299 1,821 

Abs 0,791 2,154 0,348 2,206 1,257 1,761 

SG 0,736 2,424 0,388 2,136 1,298 1,819 

SVM - 

linear 

Bruto 0,751 2,353 0,678 1,550 1,788 2,506 

Abs 0,813 2,037 0,529 1,874 1,479 2,073 

SG 0,716 2,512 0,674 1,559 1,779 2,493 

Cubist 

Bruto 1,000 0,086 0,716 1,454 1,906 2,671 

Abs 0,999 0,114 0,697 1,504 1,844 2,584 

SG 1,000 0,082 0,476 1,977 1,403 1,965 

Nitrogênio (g/kg) (DP = 0,561) 

PLSR 

Bruto 0,842 0,358 0,452 0,409 1,371 1,289 

Abs 0,801 0,402 0,433 0,416 1,348 1,268 

SG 0,813 0,389 0,449 0,410 1,368 1,286 

SVM - 

radial 

Bruto 0,806 0,397 0,378 0,436 1,287 1,210 

Abs 0,921 0,254 0,117 0,519 1,080 1,016 

SG 0,893 0,294 0,201 0,494 1,136 1,068 

SVM - 

linear 

Bruto 0,823 0,379 0,338 0,450 1,248 1,173 

Abs 0,873 0,322 0,328 0,453 1,238 1,164 

SG 0,736 0,463 0,367 0,440 1,276 1,200 

Cubist 

Bruto 0,734 0,464 0,510 0,387 1,450 1,364 

Abs 0,789 0,414 0,446 0,412 1,363 1,282 

SG 0,613 0,560 0,282 0,468 1,198 1,126 

Fósforo (mg/kg) (DP = 22,603) 

PLSR 

Bruto 0,897 4,343 0,733 11,497 1,966 0,635 

Abs 0,533 9,244 0,412 17,073 1,324 0,428 

SG 0,871 4,856 0,745 11,257 2,008 0,648 

SVM - 

radial 

Bruto 0,522 9,355 0,255 19,218 1,176 0,380 

Abs 0,537 9,209 0,318 18,388 1,229 0,397 

SG 0,500 9,572 0,258 19,186 1,178 0,380 

SVM - 

linear 

Bruto 0,655 7,952 0,482 16,025 1,410 0,456 

Abs 0,543 9,149 0,365 17,738 1,274 0,412 

SG 0,625 8,287 0,502 15,714 1,438 0,465 

      Continua... 
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Algoritmo 
Tratamento –  

dados espectrais 
R² calib. 

RMSE 

calib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

Cubist 

Bruto 0,529 9,281 0,240 19,412 1,164 0,376 

Abs 0,498 9,585 0,165 20,346 1,111 0,359 

SG 0,380 10,658 0,213 19,752 1,144 0,370 

Potássio (cmolc/kg) (DP = 0,078) 

PLSR 

Bruto 0,385 0,057 0,247 0,067 1,170 1,180 

Abs 0,559 0,048 0,605 0,048 1,615 1,630 

SG 0,523 0,050 0,338 0,063 1,248 1,259 

SVM - 

radial 

Bruto 0,160 0,064 0,153 0,071 1,103 1,113 

Abs 0,224 0,064 0,139 0,071 1,094 1,104 

SG 0,215 0,064 0,154 0,071 1,103 1,114 

SVM - 

linear 

Bruto 0,614 0,045 0,387 0,060 1,296 1,308 

Abs 0,609 0,045 0,494 0,055 1,427 1,441 

SG 0,508 0,051 0,363 0,061 1,272 1,284 

Cubist 

Bruto 0,998 0,003 0,116 0,072 1,079 1,089 

Abs 0,056 0,070 0,128 0,072 1,087 1,097 

SG 0,048 0,070 0,091 0,073 1,064 1,074 

Cálcio (cmolc/kg) (DP = 5,032) 

PLSR 

Bruto 0,622 2,129 0,274 4,225 1,191 0,315 

Abs 0,352 2,789 0,481 3,571 1,409 0,372 

SG 0,727 1,809 0,434 3,730 1,349 0,357 

SVM - 

radial 

Bruto 0,483 2,490 0,028 4,888 1,030 0,272 

Abs 0,614 2,152 0,032 4,877 1,032 0,273 

SG 0,666 2,002 0,046 4,811 1,039 0,275 

SVM - 

linear 

Bruto 0,775 1,645 0,268 4,242 1,186 0,314 

Abs 0,770 1,662 -0,101 5,201 0,968 0,256 

SG 0,747 1,743 0,342 4,023 1,251 0,331 

Cubist 

Bruto 0,636 2,090 0,217 4,387 1,147 0,303 

Abs 0,713 1,857 0,427 3,755 1,340 0,354 

SG 0,627 2,115 0,215 4,392 1,146 0,303 

Magnésio (cmolc/kg) (DP = 1,950) 

PLSR 

Bruto 0,679 2,395 0,505 1,351 1,443 0,740 

Abs 0,646 2,515 0,359 1,538 1,268 0,650 

SG 0,603 2,663 0,458 1,414 1,379 0,707 

SVM - 

radial 

Bruto 0,236 3,696 0,293 1,615 1,207 0,619 

Abs 0,358 3,389 0,362 1,534 1,271 0,652 

SG 0,260 3,639 0,346 1,554 1,255 0,644 

SVM - 

linear 

Bruto 0,713 2,266 0,469 1,399 1,393 0,715 

Abs 0,775 2,005 0,028 1,894 1,029 0,528 

SG 0,720 2,237 0,481 1,384 1,409 0,723 
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Algoritmo 
Tratamento –  

dados espectrais 
R² calib. 

RMSE 

calib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

Cubist 

Bruto 0,897 1,359 -1,274 2,896 0,673 0,345 

Abs 0,914 1,238 -0,936 2,672 0,730 0,374 

SG 1,000 0,065 -1,264 2,890 0,675 0,346 

Sódio (cmolc/kg) (DP = 1,687) 

PLSR 

Bruto 0,490 1,377 0,623 1,020 1,653 0,255 

Abs 0,493 1,373 0,521 1,150 1,467 0,227 

SG 0,431 1,455 0,608 1,040 1,621 0,250 

SVM - 

radial 

Bruto 0,312 1,599 0,186 1,499 1,125 0,174 

Abs 0,243 1,678 0,108 1,570 1,074 0,166 

SG 0,205 1,720 0,169 1,515 1,113 0,172 

SVM - 

linear 

Bruto 0,232 1,690 0,340 1,350 1,250 0,193 

Abs 0,329 1,580 0,530 1,139 1,481 0,229 

SG 0,194 1,731 0,264 1,425 1,183 0,183 

Cubist 

Bruto 1,000 0,037 0,510 1,163 1,450 0,224 

Abs 1,000 0,024 0,506 1,167 1,445 0,223 

SG 1,000 0,025 0,520 1,151 1,465 0,226 

Alumínio trocável (cmolc/kg) (DP = 0,665) 

PLSR 

Bruto 0,136 0,757 0,313 0,543 1,224 1,492 

Abs 0,178 0,738 0,278 0,557 1,194 1,455 

SG 0,136 0,757 0,312 0,543 1,224 1,492 

SVM - 

radial 

Bruto 0,431 0,614 0,496 0,501 1,327 1,616 

Abs 0,465 0,596 0,495 0,465 1,429 1,740 

SG 0,420 0,620 0,498 0,464 1,432 1,745 

SVM - 

linear 

Bruto 0,532 0,557 -0,151 0,703 0,946 1,153 

Abs 0,550 0,546 -0,647 0,840 0,791 0,964 

SG 0,452 0,603 0,020 0,648 1,026 1,250 

Cubist 

Bruto 0,516 0,566 0,355 0,526 1,264 1,541 

Abs 0,559 0,541 0,273 0,558 1,191 1,451 

SG 0,397 0,632 0,329 0,537 1,239 1,510 

Soma de bases (cmolc/kg) (DP = 7,502) 

PLSR 

Bruto 0,599 4,833 0,569 4,850 1,547 0,551 

Abs 0,445 5,686 0,328 6,059 1,238 0,441 

SG 0,601 4,823 0,601 4,669 1,607 0,572 

SVM - 

radial 

Bruto 0,596 4,855 0,174 6,717 1,117 0,398 

Abs 0,653 4,496 0,183 6,682 1,123 0,400 

SG 0,659 4,458 0,160 6,774 1,107 0,395 

SVM - 

linear 

Bruto 0,670 4,387 0,347 5,973 1,256 0,447 

Abs 0,750 3,819 -9,458 23,900 0,314 0,112 

SG 0,641 4,571 0,424 5,610 1,337 0,476 
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Algoritmo 
Tratamento –  

dados espectrais 
R² calib. 

RMSE 

calib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

Cubist 

Bruto 0,723 4,019 0,590 4,730 1,586 0,565 

Abs 0,999 0,241 0,602 4,661 1,610 0,573 

SG 0,999 0,290 0,609 4,625 1,622 0,578 

Capacidade de troca catiônica (cmolc/kg) (DP = 7,494) 

PLSR 

Bruto 0,599 4,954 0,590 4,725 1,586 0,399 

Abs 0,608 4,895 0,505 5,196 1,442 0,363 

SG 0,668 4,504 0,269 6,313 1,187 0,299 

SVM - 

radial 

Bruto 0,422 5,948 0,213 6,552 1,144 0,288 

Abs 0,472 5,685 0,166 6,744 1,111 0,280 

SG 0,818 3,332 0,087 7,055 1,062 0,267 

SVM - 

linear 

Bruto 0,710 4,208 0,512 5,158 1,453 0,365 

Abs 0,799 3,506 -3,167 15,070 0,497 0,125 

SG 0,674 4,462 0,483 5,308 1,412 0,355 

Cubist 

Bruto 0,999 0,193 0,521 5,107 1,467 0,369 

Abs 1,000 0,171 0,552 4,944 1,516 0,381 

SG 0,998 0,320 0,446 5,493 1,364 0,343 

Saturação por bases (%) (DP = 27,743) 

PLSR 

Bruto 0,845 10,344 0,335 22,284 1,245 2,266 

Abs 0,833 10,730 0,331 22,363 1,241 2,258 

SG 0,817 11,252 0,357 21,919 1,266 2,304 

SVM - 

radial 

Bruto 0,724 13,788 0,414 20,919 1,326 2,414 

Abs 0,698 14,443 0,432 20,598 1,347 2,452 

SG 0,709 14,163 0,406 21,067 1,317 2,397 

SVM - 

linear 

Bruto 0,871 9,427 0,387 21,408 1,296 2,359 

Abs 0,881 9,077 0,313 22,655 1,225 2,229 

SG 0,801 11,717 0,408 21,022 1,320 2,402 

Cubist 

Bruto 1,000 0,439 0,623 16,786 1,653 3,009 

Abs 0,706 14,235 0,488 19,558 1,419 2,582 

SG 1,000 0,479 0,699 14,995 1,850 3,368 

pH em água (DP = 0,875) 

PLSR 

Bruto 0,457 0,653 0,410 0,662 1,322 1,586 

Abs 0,572 0,601 0,137 0,801 1,093 1,311 

SG 0,397 0,703 0,411 0,662 1,322 1,587 

SVM - 

radial 

Bruto 0,292 0,756 0,250 0,747 1,172 1,406 

Abs 0,259 0,766 0,276 0,733 1,193 1,432 

SG 0,255 0,792 0,256 0,744 1,177 1,412 

SVM - 

linear 

Bruto 0,532 0,625 0,125 0,806 1,085 1,302 

Abs 0,527 0,578 0,206 0,768 1,139 1,367 

SG 0,446 0,654 0,355 0,692 1,264 1,517 

Cubist Bruto 0,367 0,711 0,122 0,808 1,083 1,300 
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Algoritmo 
Tratamento –  

dados espectrais 
R² calib. 

RMSE 

calib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

Abs 0,516 0,641 0,193 0,775 1,130 1,356 

SG 0,384 0,703 0,486 0,618 1,416 1,700 

Percentagem de saturação por sódio (%)(DP = 16,142) 

PLSR 

Bruto 0,901 3,775 0,058 15,437 1,046 0,384 

Abs 0,705 6,498 0,084 15,221 1,060 0,389 

SG 0,869 4,326 0,067 15,358 1,051 0,386 

SVM - 

radial 

Bruto 0,475 8,673 0,211 14,126 1,143 0,419 

Abs 0,458 8,809 0,136 14,784 1,092 0,401 

SG 0,441 8,890 0,215 14,090 1,145 0,420 

SVM - 

linear 

Bruto 0,640 7,183 0,012 15,804 1,021 0,375 

Abs 0,755 5,926 0,010 15,823 1,020 0,374 

SG 0,555 7,988 0,056 15,453 1,045 0,383 

Cubist 

Bruto 1,000 0,166 0,504 11,203 1,441 0,529 

Abs 0,674 6,836 0,610 9,931 1,626 0,597 

SG 1,000 0,241 0,673 9,095 1,775 0,651 

Condutividade elétrica (dS/m) (DP = 0,466) 

PLSR 

Bruto 0,549 1,311 0,719 0,243 1,913 0,606 

Abs 0,086 1,865 0,326 0,377 1,236 0,392 

SG 0,496 1,384 0,734 0,237 1,968 0,623 

SVM - 

radial 

Bruto 0,241 1,699 0,609 0,287 1,623 0,514 

Abs 0,116 1,835 0,282 0,389 1,198 0,380 

SG 0,240 1,700 0,620 0,283 1,646 0,521 

SVM - 

linear 

Bruto 0,368 1,551 0,399 0,356 1,309 0,415 

Abs 0,413 1,495 0,560 0,304 1,531 0,485 

SG 0,337 1,588 -1,152 0,673 0,692 0,219 

Cubist 

Bruto 0,997 0,111 0,168 0,418 1,113 0,353 

Abs 0,998 0,083 0,160 0,421 1,107 0,351 

SG 0,998 0,093 -0,528 0,567 0,821 0,260 

      Conclusão 
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APÊNDICE E - RESULTADO DA CALIBRAÇÃO E VALIDAÇÃO DOS MODELOS 

PREDITIVOS PARA OS ATRIBUTOS FÍSICOS COM ESPECTRO MIR 

Algoritmo 

Tratamento - 

dados 

espectrais 

R² 

calib. 

RMSE 

calib. 
R² valid. 

RMSE  

valid. 
RPD RPIQ 

Areia (g/kg) (DP =161,953) 

PLSR 

Bruto 0,928 55,922 0,838 64,181 2,523 4,137 

Abs 0,959 42,095 0,514 111,188 1,457 2,388 

SG 0,931 54,718 0,818 68,028 2,381 3,903 

SVM - 

radial 

Bruto 0,984 26,745 0,883 54,538 2,970 4,868 

Abs 0,984 26,017 0,867 58,181 2,784 4,563 

SG 0,982 28,100 0,883 54,533 2,970 4,869 

SVM - 

linear 

Bruto 0,985 25,348 0,858 60,215 2,690 4,409 

Abs 0,986 24,874 0,517 110,849 1,461 2,395 

SG 0,985 25,770 0,845 62,783 2,580 4,229 

Cubist 

Bruto 0,998 10,436 0,893 52,321 3,095 5,074 

Abs 0,931 54,886 0,832 65,314 2,480 4,065 

SG 0,912 61,775 0,872 57,062 2,838 4,653 

Silte (g/kg) (DP = 127,192) 

PLSR 

Bruto 0,987 13,612 0,830 51,656 2,462 2,817 

Abs 0,814 51,087 0,755 61,969 2,053 2,348 

SG 0,789 54,366 0,830 51,669 2,462 2,816 

SVM - 

radial 

Bruto 0,967 21,593 0,542 84,815 1,500 1,715 

Abs 0,985 14,671 0,596 79,645 1,597 1,827 

SG 0,961 23,349 0,559 83,258 1,528 1,748 

SVM - 

linear 

Bruto 0,991 11,342 0,776 59,259 2,146 2,455 

Abs 0,990 11,916 0,717 66,684 1,907 2,182 

SG 0,991 11,454 0,739 64,064 1,985 2,271 

Cubist 

Bruto 0,981 16,258 0,716 66,726 1,906 2,181 

Abs 1,000 1,452 0,729 65,207 1,951 2,231 

SG 0,993 9,803 0,768 60,423 2,105 2,408 

Argila (g/kg) (DP =112,820) 

PLSR 

Bruto 0,840 45,731 0,835 45,146 2,499 3,234 

Abs 0,901 36,011 0,815 47,750 2,363 3,058 

SG 0,961 22,515 0,855 42,364 2,663 3,446 

SVM - 

radial 

Bruto 0,938 28,534 0,864 40,958 2,755 3,565 

Abs 0,920 32,317 0,850 43,041 2,621 3,392 

SG 0,987 13,264 0,879 38,614 2,922 3,781 

SVM - 

linear 

Bruto 0,990 11,218 0,868 40,460 2,788 3,608 

Abs 0,990 11,420 0,685 62,333 1,810 2,342 

SG 0,990 11,503 0,783 51,826 2,177 2,817 

Cubist 

Bruto 0,998 4,599 0,856 42,244 2,671 3,456 

Abs 0,918 32,808 0,822 46,834 2,409 3,117 

SG 0,999 2,954 0,812 48,136 2,344 3,033 
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APÊNDICE F - RESULTADO DA CALIBRAÇÃO E VALIDAÇÃO DOS MODELOS 

PREDITIVOS PARA OS ATRIBUTOS QUÍMICOS COM ESPECTROS MIR 

Algoritmo 
Tratamento – 

dados espectrais 

R² 

calib. 

RMSE 

claib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

Carbono orgânico (g/kg) (DP = 2,772) 

PLSR 

Bruto 0,992 0,429 0,792 1,246 2,226 3,119 

Abs 0,971 0,804 0,703 1,488 1,863 2,611 

SG 0,984 0,600 0,740 1,392 1,991 2,791 

SVM - 

radial 

Bruto 0,990 0,468 0,403 2,111 1,313 1,840 

Abs 0,992 0,425 0,531 1,870 1,482 2,077 

SG 0,989 0,487 0,421 2,078 1,334 1,869 

SVM - 

linear 

Bruto 0,995 0,348 0,734 1,409 1,967 2,756 

Abs 0,994 0,361 0,754 1,355 2,047 2,868 

SG 0,994 0,362 0,698 1,501 1,848 2,589 

Cubist 

Bruto 0,999 0,149 0,716 1,455 1,906 2,671 

Abs 0,924 1,296 0,800 1,221 2,271 3,182 

SG 0,999 0,151 0,749 1,368 2,026 2,839 

Nitrogênio (g/kg) (DP = 0,561) 

PLSR 

Bruto 0,992 0,079 0,727 0,289 1,944 1,828 

Abs 0,910 0,270 0,615 0,343 1,635 1,537 

SG 0,981 0,123 0,738 0,283 1,984 1,866 

SVM - 

radial 

Bruto 0,994 0,068 0,393 0,430 1,303 1,226 

Abs 0,994 0,068 0,431 0,417 1,346 1,265 

SG 0,995 0,066 0,373 0,438 1,281 1,205 

SVM - 

linear 

Bruto 0,995 0,066 0,673 0,316 1,775 1,669 

Abs 0,994 0,067 0,693 0,306 1,832 1,722 

SG 0,994 0,068 0,702 0,302 1,859 1,748 

Cubist 

Bruto 0,999 0,035 0,443 0,412 1,360 1,279 

Abs 0,905 0,277 0,658 0,323 1,735 1,632 

SG 1,000 0,014 0,423 0,420 1,336 1,257 

Fosfóro (mg/kg) (DP = 22,603) 

PLSR 

Bruto 0,743 6,856 0,511 15,571 1,452 0,469 

Abs 0,352 10,896 0,181 20,151 1,122 0,362 

SG 0,742 6,868 0,587 14,311 1,579 0,510 

SVM - 

radial 

Bruto 0,204 12,070 -0,015 22,434 1,008 0,325 

Abs 0,191 12,168 -0,033 22,627 0,999 0,323 

SG 0,215 11,988 -0,024 22,529 1,003 0,324 

SVM - 

linear 

Bruto 0,996 0,895 0,681 12,585 1,796 0,580 

Abs 0,996 0,894 0,735 11,459 1,973 0,637 

SG 0,996 0,887 0,773 10,600 2,132 0,689 

Cubist 

Bruto 0,559 8,989 0,056 21,634 1,045 0,337 

Abs 0,611 8,440 0,051 21,696 1,042 0,336 

     Continua... 



 
153 

Algoritmo 
Tratamento – 

dados espectrais 

R² 

calib. 

RMSE 

claib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

SG 0,573 8,843 0,040 21,821 1,036 0,335 

Potássio (cmolc/kg) (DP = 0,078) 

PLSR 

Bruto 0,972 0,012 0,580 0,050 1,566 1,580 

Abs 0,576 0,047 0,644 0,046 1,700 1,716 

SG 0,882 0,025 0,604 0,048 1,624 1,639 

SVM - 

radial 

Bruto 0,822 0,030 0,434 0,058 1,349 1,361 

Abs 0,893 0,024 0,550 0,052 1,514 1,528 

SG 0,897 0,023 0,494 0,055 1,428 1,441 

SVM - 

linear 

Bruto 0,990 0,007 0,464 0,056 1,387 1,400 

Abs 0,990 0,007 0,566 0,051 1,540 1,555 

SG 0,990 0,007 0,395 0,060 1,305 1,317 

Cubist 

Bruto 0,999 0,002 0,495 0,055 1,428 1,441 

Abs 1,000 0,001 0,585 0,050 1,576 1,590 

SG 0,999 0,003 0,477 0,056 1,404 1,402 

Cálcio (cmolc/kg) (DP = 5,032) 

PLSR 

Bruto 0,440 2,592 0,182 4,483 1,123 0,297 

Abs 0,595 2,204 0,281 4,205 1,197 0,316 

SG 0,691 1,925 0,245 4,308 1,168 0,309 

SVM - 

radial 

Bruto 0,800 1,550 0,309 4,123 1,221 0,323 

Abs 0,801 1,546 0,338 4,035 1,247 0,330 

SG 0,749 1,734 0,288 4,182 1,203 0,318 

SVM - 

linear 

Bruto 0,976 0,532 -0,341 5,740 0,877 0,232 

Abs 0,977 0,526 0,290 4,178 1,205 0,318 

SG 0,979 0,504 0,321 4,086 1,231 0,325 

Cubist 

Bruto 0,999 0,091 0,332 4,052 1,242 0,328 

Abs 1,000 0,022 0,327 4,066 1,238 0,327 

SG 0,999 0,091 0,295 4,162 1,209 0,320 

Magnésio (cmolc/kg) (DP = 1,950) 

PLSR 

Bruto 0,963 0,812 0,530 1,317 1,480 0,759 

Abs 0,828 1,755 0,499 1,360 1,434 0,735 

SG 0,765 2,052 0,569 1,261 1,547 0,793 

SVM - 

radial 

Bruto 0,395 2,817 0,634 1,162 1,679 0,861 

Abs 0,588 2,715 0,605 1,207 1,615 0,828 

SG 0,997 0,244 0,638 1,156 1,686 0,865 

SVM - 

linear 

Bruto 0,996 0,264 0,568 1,262 1,545 0,792 

Abs 0,996 0,253 0,469 1,400 1,392 0,714 

SG 0,996 0,265 0,570 1,260 1,548 0,794 

Cubist 

Bruto 1,000 0,029 0,103 1,819 1,072 0,550 

Abs 1,000 0,029 0,547 1,296 1,509 0,774 

SG 1,000 0,050 0,286 1,623 1,201 0,616 
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Algoritmo 
Tratamento – 

dados espectrais 

R² 

calib. 

RMSE 

claib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

Sódio (cmolc/kg) (DP = 1,687) 

PLSR 

Bruto 0,594 1,228 0,465 1,216 1,387 0,214 

Abs 0,969 0,341 0,344 1,346 1,253 0,194 

SG 0,558 1,282 0,515 1,157 1,458 0,225 

SVM - 

radial 

Bruto 0,782 0,900 0,446 1,236 1,364 0,211 

Abs 0,998 0,092 0,472 1,208 1,396 0,216 

SG 0,741 0,981 0,447 1,236 1,364 0,211 

SVM - 

linear 

Bruto 0,998 0,090 0,275 1,415 1,192 0,184 

Abs 0,998 0,092 0,361 1,329 1,270 0,196 

SG 0,996 0,129 0,400 1,288 1,310 0,202 

Cubist 

Bruto 1,000 0,019 0,593 1,060 1,591 0,246 

Abs 1,000 0,005 0,611 1,036 1,628 0,251 

SG 1,000 0,017 0,465 1,216 1,387 0,214 

Alumínio trocável (cmolc/kg) (DP = 0,665) 

PLSR 

Bruto 0,685 0,457 0,689 0,366 1,819 2,216 

Abs 0,410 0,625 0,585 0,422 1,576 1,921 

SG 0,630 0,495 0,712 0,352 1,890 2,303 

SVM - 

radial 

Bruto 0,974 0,132 0,675 0,373 1,781 2,170 

Abs 0,991 0,078 0,628 0,399 1,665 2,029 

SG 0,783 0,379 0,630 0,398 1,670 2,035 

SVM - 

linear 

Bruto 0,991 0,077 0,606 0,411 1,617 1,970 

Abs 0,991 0,077 0,598 0,415 1,600 1,950 

SG 0,991 0,078 0,326 0,538 1,236 1,506 

Cubist 

Bruto 0,974 0,130 0,567 0,431 1,542 1,879 

Abs 1,000 0,007 0,557 0,436 1,525 1,859 

SG 0,974 0,131 0,573 0,428 1,553 1,892 

Soma de bases (cmolc/kg) (DP = 7,502) 

PLSR 

Bruto 0,824 3,207 0,596 4,700 1,596 0,569 

Abs 0,779 3,591 0,531 5,062 1,482 0,528 

SG 0,838 3,072 0,620 4,554 1,647 0,587 

SVM - 

radial 

Bruto 0,917 2,196 0,529 5,071 1,479 0,527 

Abs 0,978 1,145 0,485 5,302 1,415 0,504 

SG 0,923 2,134 0,537 5,032 1,491 0,531 

SVM - 

linear 

Bruto 0,984 0,965 0,352 5,949 1,261 0,449 

Abs 0,980 1,082 0,468 5,390 1,392 0,496 

SG 0,983 1,000 0,648 4,387 1,710 0,609 

Cubist 

Bruto 1,000 0,101 0,428 5,591 1,342 0,478 

Abs 0,915 2,226 0,461 5,428 1,382 0,492 

SG 1,000 0,060 0,444 5,512 1,361 0,485 

Capacidade de troca catiônica (cmolc/kg) (DP = 7,494) 
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Algoritmo 
Tratamento – 

dados espectrais 

R² 

calib. 

RMSE 

claib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

PLSR 

Bruto 0,856 2,966 0,543 4,989 1,502 0,378 

Abs 0,774 3,722 0,473 5,361 1,398 0,352 

SG 0,847 3,061 0,569 4,849 1,545 0,389 

SVM - 

radial 

Bruto 0,949 1,766 0,490 5,273 1,421 0,357 

Abs 0,861 2,916 0,464 5,405 1,387 0,349 

SG 0,956 1,642 0,490 5,273 1,421 0,357 

SVM - 

linear 

Bruto 0,988 0,848 0,427 5,588 1,341 0,337 

Abs 0,987 0,906 0,356 5,924 1,265 0,318 

SG 0,978 0,888 0,616 4,578 1,637 0,412 

Cubist 

Bruto 1,000 0,071 0,463 5,409 1,385 0,348 

Abs 1,000 0,032 0,486 5,294 1,415 0,356 

SG 1,000 0,081 0,489 5,276 1,420 0,357 

Saturação por bases (%) (DP = 27,743) 

PLSR 

Bruto 0,683 14,795 0,422 20,776 1,335 2,431 

Abs 0,620 16,183 0,584 17,635 1,573 2,864 

SG 0,694 14,541 0,425 20,732 1,338 2,436 

SVM - 

radial 

Bruto 0,922 7,343 0,540 18,545 1,496 2,723 

Abs 0,971 4,473 0,541 18,515 1,498 2,727 

SG 0,779 12,349 0,522 18,895 1,468 2,673 

SVM - 

linear 

Bruto 0,989 2,797 0,070 26,365 1,052 1,915 

Abs 0,989 2,768 0,046 26,702 1,039 1,891 

SG 0,989 2,765 0,290 23,025 1,205 2,193 

Cubist 

Bruto 0,887 8,833 0,658 15,977 1,736 3,161 

Abs 0,888 8,803 0,600 17,303 1,603 2,919 

SG 0,913 7,742 0,568 17,963 1,545 2,811 

pH em água (DP = 0,875) 

PLSR 

Bruto 0,777 0,431 0,510 0,603 1,451 1,741 

Abs 0,744 0,460 0,553 0,576 1,518 1,822 

SG 0,714 0,441 0,417 0,658 1,329 1,595 

SVM - 

radial 

Bruto 0,593 0,533 0,545 0,581 1,505 1,806 

Abs 0,577 0,562 0,497 0,611 1,431 1,718 

SG 0,603 0,547 0,491 0,615 1,423 1,708 

SVM - 

linear 

Bruto 0,761 0,419 0,521 0,597 1,466 1,759 

Abs 0,698 0,496 0,540 0,585 1,497 1,796 

SG 0,568 0,614 0,410 0,662 1,321 1,585 

Cubist 

Bruto 0,727 0,453 0,466 0,630 1,389 1,667 

Abs 0,624 0,515 0,451 0,639 1,370 1,644 

SG 0,707 0,454 0,535 0,588 1,488 1,786 

Percentagem de saturação por sódio (%) (DP = 16,142) 

PLSR 
Bruto 0,663 6,948 0,366 12,664 1,275 0,542 

Abs 0,961 2,378 0,319 13,122 1,230 0,458 
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Algoritmo 
Tratamento – 

dados espectrais 

R² 

calib. 

RMSE 

claib. 

R² 

valid. 

RMSE 

valid. 
RPD RPIQ 

SG 0,674 6,837 0,327 13,044 1,238 0,454 

SVM - 

radial 

Bruto 0,832 4,903 0,265 13,631 1,184 0,435 

Abs 0,996 0,790 0,345 12,870 1,254 0,460 

SG 0,810 5,221 0,286 13,439 1,201 0,441 

SVM - 

linear 

Bruto 0,996 0,799 0,364 12,679 1,273 0,467 

Abs 0,996 0,794 0,374 12,578 1,283 0,471 

SG 0,996 0,779 0,376 12,567 1,285 0,471 

Cubist 

Bruto 1,000 0,086 0,208 14,153 1,141 0,419 

Abs 1,000 0,082 0,185 14,355 1,124 0,413 

SG 0,999 0,428 0,153 14,634 1,103 0,405 

Condutividade elétrica (dS/m) (DP = 4,666) 

PLSR 

Bruto 0,406 1,504 0,600 0,290 1,605 0,508 

Abs 0,867 0,712 0,381 0,361 1,290 0,409 

SG 0,382 1,533 0,832 0,188 2,478 0,785 

SVM - 

radial 

Bruto 0,981 0,271 0,474 0,333 1,400 0,443 

Abs 0,981 0,271 0,515 0,319 1,458 0,462 

SG 0,981 0,271 0,600 0,290 1,606 0,509 

SVM - 

linear 

Bruto 0,982 0,265 0,231 0,402 1,158 0,367 

Abs 0,981 0,268 0,365 0,365 1,274 0,404 

SG 0,982 0,264 0,459 0,338 1,379 0,437 

Cubist 

Bruto 0,783 0,910 -0,363 0,536 0,869 0,275 

Abs 0,849 0,759 0,200 0,410 1,135 0,359 

SG  0,997 0,106 0,215 0,406 1,146 0,363 

      Conclusão 

 

 


