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RESUMO

O solo ¢ essencial para a existéncia da vida na Terra e para o desempenho de servigos
ecossistémicos, tornando imperativo o monitoramento eficiente dos seus atributos.
Tradicionalmente, o solo ¢ avaliado por meio de analises laboratoriais de quimica umida,
todavia, esta técnica tem se mostrado onerosa e demorada. Como alternativa promissora, o
sensoriamento proximo com a técnica de espectroscopia de reflectancia destaca-se por
permitir realizar analises pedologicas rapidas e de baixo custo, sendo especialmente vantajosa
para o estudo de regides heterogéneas e susceptiveis a degradacdo, como o Nordeste
brasileiro. Diante desse contexto, o presente estudo teve como objetivos: - explorar o
potencial dos espectros do visivel ao infravermelho médio para caracterizar o comportamento
espectral de solos da regido Nordeste; - quantificar os atributos fisico-quimicos desses solos,
incluindo a salinidade e a sodicidade, por meio da espectroscopia na faixa de 350 — 15000 nm
e algoritmos de estatistica multivariada. Foram avaliadas 114 amostras de solo, abrangendo
nove ordens, coletadas em 24 perfis pedoldgicos distribuidos por 13 municipios do Cearé. Por
meio das analises de quimica imida foram determinados os atributos: carbono organico,
nitrogénio total, fésforo disponivel, potdssio, calcio, magnésio, sédio e aluminio trocaveis,
condutividade elétrica, pH, soma de bases, capacidade de troca catidnica, saturagcdo de bases e
a percentagem de saturacdo por sodio. A analise espectral avaliou a reflectdncia do solo nas
faixas do visivel, infravermelho préximo, infravermelho de ondas curtas (vis-Nir-SWIR) e
infravermelho médio (MIR), tendo sido esses dados pré-processados com as técnicas de
suavizacdao com o filtro Savitzky-Golay e conversdo para absorbancia. O resultado da analise
convencional foi avaliado com estatistica descritiva. Os dados suavizados foram submetidos a
analise de componentes principais (ACP), e os escores da ACP foram utilizados para andlise
de agrupamento com o algoritmo de classificagdo ndo supervisionada Fuzzy K-médias. Para a
quantificacdo dos atributos, os modelos preditivos foram desenvolvidos com os espectros
brutos e pré-processados, utilizando-se os algoritmos de Regressdo por Minimos Quadrados
Parciais, Maquina de Vetor Suporte com fun¢des Kernel lineares e radiais e Algoritmo
Cubista. O desempenho dos modelos preditivos foi avaliado pelas métricas de R?, RMSE,
RPD e RPIQ. Os resultados da andlise qualitativa revelaram comportamentos espectrais com
padroes distintos entre as ordens de solo. A classificagdo ndo supervisionada agrupou
amostras com base nas caracteristicas dos horizontes, com a regido MIR demonstrando maior
sensibilidade para identificar variagdes mais sutis entre os horizontes. Na analise quantitativa,

todos os atributos foram preditos com desempenho, no minimo, satisfatério, com excegao do



calcio que exibiu desempenho insatisfatério com R? inferior a 0,50. Os modelos
desenvolvidos com dados do MIR superaram consistentemente o desempenho daqueles da
faixa vis-NIR-SWIR para a maioria dos atributos. As predi¢des da condutividade elétrica e da
percentagem de saturacdo por sédio apresentaram desempenho razoavel, evidenciando o
potencial da técnica para o diagnéstico da salinidade e sodicidade dos solos. Esses resultados
ratificam o potencial da espectroscopia de reflectdncia como uma ferramenta eficiente e

alternativa para a caracterizagdo e predi¢do de atributos em solos heterogéneos.

Palavras-chave: sensoriamento proximo; comportamento espectral; quantificagio;

salinidade; sodicidade.



ABSTRACT

Soil is essential for life on Earth and for the performance of ecosystem services, making
efficient monitoring of its attributes essential. Traditionally, soil is evaluated through wet
chemistry laboratory analyses, but this technique has proven to be costly and time-consuming.
As a promising alternative, remote sensing using reflectance spectroscopy stands out for
allowing rapid and low-cost pedological analyses, which is especially advantageous for the
study of heterogeneous regions susceptible to degradation, such as Northeast Brazil. Given
this context, the objectives of this study were: - to explore the potential of visible to mid-
infrared spectra to characterize the spectral behavior of soils in the Northeast region; - to
quantify the physical and chemical attributes of these soils, including salinity and sodicity,
using spectroscopy in the 350—15,000 nm range and multivariate statistical algorithms. A total
of 114 soil samples were evaluated, covering nine orders, collected from 24 soil profiles
distributed across 13 cities in Ceara. Through wet chemistry analyses, the following attributes
were determined: organic carbon, total nitrogen, available phosphorus, exchangeable
potassium, calcium, magnesium, sodium, and aluminum, electrical conductivity, pH, base
sum, cation exchange capacity, base saturation, and sodium saturation percentage. Spectral
analysis evaluated soil reflectance in the visible, near-infrared, short-wave infrared (vis-Nir-
SWIR), and mid-infrared (MIR) ranges, with data preprocessed using Savitzky-Golay
smoothing and conversion to absorbance. The results of the conventional analysis were
evaluated using descriptive statistics. The smoothed data were subjected to principal
component analysis (PCA), and the PCA scores were used for cluster analysis with the
unsupervised Fuzzy K-means classification algorithm. To quantify the attributes, predictive
models were developed with raw and preprocessed spectra using Partial Least Squares
Regression, Support Vector Machine with linear and radial kernel functions, and Cubist
Algorithm algorithms. The performance of the predictive models was evaluated by the metrics
R?, RMSE, RPD, and RPIQ. The results of the qualitative analysis revealed spectral behaviors
with distinct patterns between soil orders. Unsupervised classification grouped samples based
on horizon characteristics, with the MIR region showing greater sensitivity to identify more
subtle variations between horizons. In the quantitative analysis, all attributes were predicted
with at least satisfactory performance, except for calcium, which showed unsatisfactory
performance with R? below 0.50. The models developed with MIR data consistently
outperformed those in the vis-NIR-SWIR range for most attributes. The predictions of

electrical conductivity and sodium saturation percentage showed reasonable performance,



highlighting the potential of the technique for diagnosing soil salinity and sodicity. These
results confirm the potential of reflectance spectroscopy as an efficient and alternative tool for

characterizing and predicting attributes in heterogeneous soils.

Keywords: near-surface sensing; spectral behavior; quantification; salinity; sodicity.
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1 INTRODUCAO GERAL

O atual cenario de rapido crescimento populacional tem aumentado
expressivamente a demanda por alimentos, conferindo ao solo papel central tanto para manter
o equilibrio ecologico quanto para promover a seguranca alimentar. Diante disso, ha o
consenso de que a manutencdo de solos sauddveis ¢ a base para viabilizar a seguranca
alimentar e mitigar os efeitos das mudancas climaticas (Souza; Leite; Medeiros, 2021). Nesse
contexto, o monitoramento eficiente dos sistemas edaficos € imperativo para promover a
sustentabilidade dos recursos naturais.

O monitoramento do solo ¢ tradicionalmente realizado com analises laboratoriais
de quimica umida. Embora esses métodos sejam precisos e confiaveis, sua execucdo requer
grandes quantidades de reagentes quimicos, equipamentos de alto custo e multiplas etapas
analiticas, além do uso de diversos instrumentos (Beniaich ef al., 2025). Como alternativa, as
técnicas de sensoriamento proximo tém se destacado por realizar analises rapidas, com maior
eficiéncia operacional e causando menor impacto ambiental (Yu ef al., 2023).

Nesse contexto, a espectroscopia de reflectancia desponta como uma tecnologia
promissora para a avaliacdo pedologica. Essa técnica avalia o solo com base na radiacdo
eletromagnética refletida, sem que ocorra contato direto entre o sensor € o alvo (Mendes et
al., 2022), sendo possivel por meio de uma tUnica leitura espectral avaliar os atributos fisicos,
quimicos e mineraldgicos do solo. A caracterizagao espectral ¢ feita com base no principio de
que a diversidade, concentracdo e o tamanho dos componentes organicos e inorganicos dos
solos produzem comportamentos espectrais distintos (Rizzo et al., 2021), assim, cada solo
possui sua propria assinatura espectral.

A analise espectral do solo gera milhares de valores de reflectincia (Padarian;
Minasny; Mcbratney, 2019). O processamento desses dados envolve duas etapas importantes:
o pré-processamento dos espectros brutos para extrair informagdes relevantes; e a modelagem
estatistica multivariada para predizer os atributos do solo a partir dos dados espectrais
(Beniaich et al., 2025). A etapa de pré-processamento ¢ considerada fundamental para
remover ruidos, melhorar a qualidade do sinal e a estabilidade da regressdo, havendo
atualmente diversas técnicas disponiveis para tratamento espectral (Lotfollahi ez al., 2023).

Na etapa de modelagem realiza-se a calibragdo, validagdo e teste dos modelos, por
meio de algoritmos de regressdo linear e de aprendizado de maquina. Ainda que exista uma
diversidade de algoritmos disponiveis para modelagem, nenhum ¢ globalmente aceito e

definido como padrdo para a predigdo, uma vez que cada algoritmo possui vantagens e
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limitagdes. Os métodos de regressdo linear sdo simples e de facil aplica¢dao, dando resultados
claros, contudo, sdo sensiveis a outliers. Os algoritmos de aprendizado de maquina, por sua
vez, adaptam-se melhor a estruturas de dados complexos, porém, carecem de transparéncia
durante a modelagem (Sun et al., 2024; Vasava; Das, 2022).

As informagdes obtidas na andlise espectral possuem grande relevancia quando
organizadas em bibliotecas espectrais, as quais consistem em bancos de dados de referéncia
usados para auxiliar na compreensdao do comportamento espectral do solo e na predi¢cao dos
atributos. Embora existam bibliotecas de alcance continental e nacional, a utilidade de bancos
de dados regionais ndo deve ser desconsiderada, visto que a andlise espectral é complexa,
sobretudo quando se usam bibliotecas compostas por solos formados sob diferentes materiais
de origem, climas e relevos (Dematté¢ et al, 2019; Moura-Bueno et al., 2020). Essa
complexidade torna-se mais evidente na andlise de areas extensas, como o Brasil, cujas
dimensdes continentais resultam em elevada variedade edafoclimatica.

O territorio brasileiro abriga solos com caracteristicas contrastantes entre suas
regides, destacando-se o Nordeste como exemplo notavel dessa diversidade pedologica. Esta
regido apresenta predominancia de clima semidrido, abriga o bioma Caatinga, exclusivo do
Brasil, e possui uma ampla variedade de material geologico, o que propicia a ocorréncia de
solos que variam de rasos a profundos, de arenosos a argilosos ¢ de mineralogia caulinitica a
esmectitica (Araujo Filho et al., 2022).

A Caatinga ¢ o terceiro bioma mais degradado do pais, apresentando grande parte
da sua vegetacdo modificada por atividades antropicas (Souza; Leite; Medeiros, 2021).
Associado a este cendrio, o clima semiarido contribui para o agravamento da degradacao das
terras, especialmente pelo acimulo de sais no solo, fendmeno comum em regides aridas e
semiaridas, intensificado pelo uso de 4agua de ma qualidade e por praticas de irrigagdao
inadequadas (Hailu; Mehari, 2021).

O excesso de sais no solo acarreta severos impactos sobre o desenvolvimento
agricola e a estabilidade dos ecossistemas, comprometendo a segurancga alimentar em escala
global (Sun et al., 2024). No Brasil, esse fenomeno manifesta-se de forma preocupante,
sobretudo em areas irrigadas, uma vez que o uso de dgua de baixa qualidade e a deficiéncia de
sistemas de drenagem tém contribuido para a expansdao de solos salinos e sodicos,
especialmente em regides semiaridas (Pessoa, et al., 2022).

Essas particularidades tornam urgente a avaliagdo e o monitoramento dos solos do
Nordeste brasileiro, sobretudo aqueles do bioma Caatinga. No entanto, esta regido € pouca

explorada cientificamente, de modo que a aplicacdo da espectroscopia de reflectancia em
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solos das regides aridas e semiaridas ainda ¢ incipiente (Taghdis; Farpoor; Mahmoodabadi,
2022). Ainda assim, esta técnica ¢ promissora para a avaliacdo em larga escala, representando
alternativa eficiente, rapida e de baixo custo para areas que carecem de métodos eficientes de
monitoramento.

Nesse contexto, esta tese avalia solos representativos do Nordeste brasileiro,
realizando a sua caracterizagdo espectral e a predicdo de atributos fisicos e quimicos. A
pesquisa esta estruturada em dois capitulos: o primeiro apresenta a caracterizagao do
comportamento espectral de 24 perfis pedologicos, bem como uma analise de agrupamento
baseada nos dados espectrais; e o segundo expde a modelagem preditiva de 17 atributos dos

solos.

1.1 Hipoteses

Este trabalho apresenta como hipdteses gerais:

I) A espectroscopia de reflectancia permite caracterizar de forma eficiente o
comportamento espectral e os atributos dos solos, constituindo uma ferramenta adequada para
identificacao de caracteristicas de solos tipicos do Nordeste brasileiro;

IT) A espectroscopia de reflectancia apresenta elevado potencial para a predigao de

atributos fisicos e quimicos dos solos, demonstrando ser uma técnica precisa e confidvel.
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2 REFERENCIAL TEORICO

Nesta secdo apresentam-se conceitos € panoramas tedricos que sustentam a base
técnica desta pesquisa. Expdem-se aspectos relativos as caracteristicas dos solos do Nordeste
brasileiro. Discorre-se sobre o enfoque teoérico da espectroscopia de reflectincia e o
comportamento espectral dos solos, e finaliza-se com a exploracdo das técnicas

metodoldgicas para tratamentos dos dados espectrais.

2.1 Solos do Nordeste brasileiro

A regido Nordeste abrange aproximadamente 18,2% do territdério nacional e
apresenta a maior diversidade de solos do pais, compondo um mosaico de pequenas areas com
distintas caracteristicas pedologicas. A heterogeneidade edafoclimatica dessa regido favorece
a ocorréncia de diferentes biomas - Caatinga, Cerrado, Mata Atlantica e Floresta Amazonica -,
que apresentam alta variabilidade dos recursos naturais, refletida nos diferentes solos, climas
e tipos de vegetacao (Souza; Leite; Medeiros, 2021).

O bioma Caatinga ¢ o de maior predominancia no Nordeste, ocupando mais de
50% da sua area e distribuindo-se pelos estados do Maranhdo, Piaui, Ceard, Rio Grande do
Norte, Pernambuco, Paraiba, Alagoas, Sergipe e Bahia, estendendo-se ainda por parte de
Minas Gerais. Trata-se de um bioma exclusivamente brasileiro, caracterizado pelo clima
semiarido, com altas temperaturas e longos periodos de estiagem. Sua vegetacdo destaca-se
pela alta heterogeneidade, possuindo rica biodiversidade e muitas espécies endémicas que sdo
adaptadas as condi¢des de semiaridez; contudo, encontra-se intensamente degradada pela agao
antropica (Alves; Araujo; Nascimento, 2009; Souza; Leite; Medeiros, 2021).

Além da diversidade de biomas, a regido Nordeste apresenta alta variabilidade de
material geoldgico, abrangendo desde rochas cristalinas (igneas e metamorficas) até
sedimentares. Essa variedade litologica favorece a formagdo de variados tipos de solos com
diferentes graus de intemperismo e desenvolvimento pedogenético (Aratjo Filho et al., 2022),
além de influenciar os atributos pedoldgicos. Neste perspectiva, a soma de bases (SB) dos
solos ¢ muito varidvel, sendo comum que nos locais em que as rochas sdo mais ricas em
minerais maficos (rochas basicas) a SB varia de alta a muito alta. Por outro lado, nos locais
em que os materiais sdo rochas félsicas (acidas), frequentemente os valores de SB s3o baixos

(Souza; Leite; Medeiros, 2021).
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A natureza do material parental influencia, também, o tipo de minerais presentes
no solo. Os materiais cristalinos sdo em sua maioria muito resistentes a erosdo e ao
intemperismo, assim, solos desenvolvidos a partir destas rochas possuem forte correlacao com
o material de origem, apresentando comumente profundidade limitada e minerais primarios na
composicao, além de minerais secundarios menos intemperizados (argilas do tipo 2:1). Em
contrastante, os solos oriundos de materiais sedimentares sdo mais desenvolvidos e mais
profundos, com predominio de minerais mais intemperizados como os argilominerais
secundarios do tipo 1:1 e oxidicos (Ximenes, ef al., 2019).

Associado a variabilidade de material geologico, o clima caracteristico da regido
Nordeste favorece a heterogeneidade pedolégica. A medida que a precipitagio ¢ limitada
nessa regido, o clima reduz sua a¢do mitigando a atuacdo dos processos pedogenéticos, o que
faz com o material de origem passe a assumir importante funcdo na diferenciacdo dos solos
(Saraiva, et al., 2020). Diante disso, os solos da regido destacam-se por conservar, em grande
parte, fei¢cdes herdadas do material de origem, de modo a refletir o seu ambiente de formacao
(Souza, 2020).

Entre os solos presentes na regido Nordeste destacam-se as seguintes classes pela
area ocupada: Latossolos (30,4%), Neossolos (24,0%), Argissolos (18,0%), Luvissolos
(7,4%), Planossolos (7,4%), Plintossolos (6,3%), Cambissolos (2,4%) e Gleissolos (1,3%) e
em menor percentual os Vertissolos (0,3%) (Souza; Leite; Medeiros, 2021). As principais
caracteristicas desses solos, definidas segundo o Sistema Brasileiro de Classificacdo de Solos

(Santos et al., 2025), estao disponiveis na Tabela 1.
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Tabela 1 - Caracteristicas dos principais solos presentes na regido Nordeste, conforme o
Sistema Brasileiro de Classificagdo de Solos

Ordem

Caracteristica

Argissolo

Cambissolo

Gleissolo

Latossolo

Luvissolo

Neossolo

Planossolo

Plintossolo

Vertissolo

Solo com horizonte diagnostico B textural com argila de atividade baixa ou
alta, desde que conjugada com saturacdo por bases baixa ou carater aluminico.
Possui profundidade varidvel, geralmente ¢ muito intemperizado, bem
desenvolvido, acido, com mineralogia predominante de argilominerais do tipo
1:1 (caulinita) e relagdo molecular Ki entre 1,0 e 3,3.

Solos com horizonte B incipiente com textura franco-arenosa ou mais fina e
com o solum apresentando teores uniformes de argila, podendo ocorrer ligeira
reducdo ou um pequeno incremento de argila do horizonte A para o B
incipiente. Possui baixo desenvolvimento e pedogénese pouco avangada
evidenciada pelo desenvolvimento da estrutura do solo.

Solos minerais, hidromorficos, formados principalmente a partir de sedimentos,
estratificados ou ndo. Apresentam expressiva gleizagdo devido ao ambiente
redutor virtualmente livre de oxigénio dissolvido em razdo da saturagdo por
agua permanente ou periddica. Ndo possuem nenhum tipo de horizonte B
diagnéstico acima do horizonte glei, o qual pode ser um horizonte C, B, E ou
A.

Solo com horizonte diagnostico B latossolico abaixo de qualquer horizonte
superficial, exceto histico. Possui avancada intemperizacdo, sendo bem
desenvolvido e, geralmente, muito profundo e acido. E virtualmente destituido
de minerais primarios, com mineralogia variando de caulinita e valores de Ki
em torno de 2,0 podendo ser 2,2, até solos oxidicos com Ki muito baixos.

Solo com horizonte diagnoéstico B textural com argila de atividade alta e
saturacdo por bases alta, abaixo de horizonte A ou E. Comumente, ¢ pouco
profundo, medianamente intemperizado, moderadamente acido e ligeiramente
alcalino. Possui relagdo molecular Ki alta variando de 2,4 a 4,0, indicando
mineralogia com expressiva presenca de argilominerais do tipo 2:1.

Solo formado por material mineral ou organico, sem a presenga de horizonte B
diagnéstico. E pouco profundo, com baixo desenvolvimento e com predominio
das caracteristicas do material parental devido a baixa atuagdo dos processos
pedogenéticos. Possui individualizagao de horizonte A seguido por C ou R.
Solo com horizonte B planico abaixo de qualquer horizonte A ou E. Apresenta
diferenciagdo bem acentuada entre os horizontes A ou E com o B, em virtude
da mudanga textural abrupta. Ocorre preferencialmente em relevos plano ou
suave ondulado e possui restricdo a permeabilidade em subsuperficie.

Solo com expressiva plintitizagdo com ou sem formacdo de petroplintita,
podendo apresentar horizonte B textural sobre ou coincidente com o horizonte
plintico ou concreciondrio. Normalmente, ¢ fortemente acido, com saturagdo
por bases baixa e atividade da fracdo argila baixa. Tipicos de zonas quentes e
umidas, geralmente com estagao seca bem definida.

Solo com horizonte vértico, pequena variagao textural ao longo do perfil e com
expressivo fendilhamento desde a superficie. Possui desenvolvimento restrito
pela grande capacidade de movimentagdo do material constitutivo, alta
saturagdo por bases, teores elevados de cdlcio e magnésio e alta relacdo Ki.

Fonte: Adaptado de Santos et al. (2025).
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2.2 Espectroscopia de reflectancia

A espectroscopia € o termo usado para se referir a técnica de obtencao de dados
por meio da absorc¢ao, transmissdo ou reflexdo da energia radiante que incide em um material
(Meneses; Almeida; Baptista, 2019). No estudo do solo com espectroscopia de reflectancia, a
informacdo ¢ obtida sem que haja contato entre sensor e alvo, sendo analisada a energia
refletida proveniente da interacdo dos componentes minerais e organicos do solo com a
radiacao eletromagnética (Mendes et al., 2022).

A energia eletromagnética refletida ¢ mensurada com um espectrorradidometro, o
qual gera resultados numéricos expressos na forma de um grafico chamado de curva de
reflectancia espectral. No grafico, o eixo X evidencia os comprimentos de onda e o eixo Y o
fator de reflectancia. Nessa perspectiva, cada solo tem uma curva espectral, ou seja, sua
assinatura espectral propria, que ¢ uma propriedade cumulativa derivada das caracteristicas
intrinsecas do solo (Dematté, 2002).

Quando a energia eletromagnética interage com um material, parte da radiagdo ¢
absorvida e parte ¢ refletida, sendo as feigdes de absor¢ao da curva espectral governadas por
dois processos gerais chamados de: eletronico e vibracional (Coblinski ef al., 2020). Nesse
sentido, as absor¢des espectrais ocorrem devido as transi¢des eletronicas dos atomos e as
vibracdes de alongamento e de dobramento de grupos de 4&tomos que formam as moléculas e
os cristais (Meneses; Almeida; Baptista, 2019).

As transigdes eletronicas requerem maiores quantidades de energia e ocorrem em
ions com elétrons desemparelhados. O processo vibracional, por sua vez, ¢ resultado das
vibracdes das ligagdes em uma molécula, de modo que cada vibracao possui uma frequéncia,
sendo esse processo dividido em vibragdao fundamental e nao fundamental (Madeira Netto;
Baptista, 2000). As transi¢des eletronicas acontecem no visivel e infravermelho proximo, as
vibragcdes ndo fundamentais incidem no infravermelho préximo e de ondas curtas, e as
vibragdes fundamentais ocorrem no infravermelho médio (Silvero et al., 2020).

Na espectroscopia de reflectdncia a faixa amplamente usada para estudos
qualitativos e quantitativos dos solos compreende ao visivel (vis: 350-700 nm), ao
infravermelho proximo (NIR: 700-1100 nm) e ao infravermelho de ondas curtas (SWIR:
1100-2500 nm) (Dematté et al., 2019). A faixa do infravermelho médio (MIR: 2500-25000
nm ou 4000-400 cm™), embora ofereca grande potencial para o estudo do solo, tem sido

aplicada em menor intensidade, sendo as pesquisas para identificar as principais feigdes
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espectrais dessa faixa incipientes em solos tropicais (Silvero et al., 2020). Todavia, nos
ultimos anos o niimero de estudos do solo nessa faixa aumentou significativamente.

As medigOes espectrais na faixa do visivel ao infravermelho de ondas curtas sao
realizadas tanto em campo quanto em laboratorio, ja as medi¢gdes no infravermelho médio
ocorrem em laboratorio. Quando os comprimentos de ondas sdo mensurados em laboratério, a
existéncia de condigdes controladas e sem interferéncia da atmosfera garante maior
confiabilidade ao relacionar a reflectancia com a composi¢ao do material, € maior precisao na
avaliacdo das caracteristicas. Os resultados das amostras de laboratorio sdo usados para
compor grandes bancos de dados, chamados de bibliotecas espectrais, que sdo formadas por
amostras espectrais representativas de solos (Meneses; Almeida; Baptista, 2019).

As medigdes espectrorradiométricas realizadas em campo podem retratar mais
fielmente as condi¢des pedologicas e dar uma boa representacdo da variabilidade espacial do
solo, todavia, apresentam o inconveniente do efeito do ambiente, como a umidade do ar ¢ a
luminosidade, além de sofrer variagdes do angulo de observagdo, da rugosidade do solo e do
manejo. Dessa maneira, geralmente as avaliagdes de campo geram resultados menos precisos
que as analises espectrais de laboratorio, especialmente pelas condi¢des naturais

descontroladas no campo (Rizzo et al., 2021).

2.3  Comportamento espectral do solo

O comportamento espectral do solo ¢ condicionado por suas caracteristicas e tem
relagdo direta com os atributos fisicos, quimicos e mineralogicos, de modo a refletir os
processos pedogenéticos incidentes e as condi¢des ambientais (Dematté et al., 2017). Logo,
alteragdes na composi¢ao edafica modificam a assinatura espectral, sendo que os caminhos da
radiacdo eletromagnética recebida pelos componentes do solo dependem de fendmenos de
interagdes macroscopicas (fisica) e microscopicas (quimica) (Terra et al., 2021).

A interagdo macroscopica ¢ responsavel pela intensidade com que um objeto
reflete a radiacdo eletromagnética em fun¢do do tamanho da onda e da textura do objeto,
sendo sua atuagdo maior nos grandes comprimentos de onda das micro-ondas, nos quais a
baixa energia ndo possibilita que ocorram interacdes no nivel de atomo e de molécula. Esse
fendmeno resulta das propriedades fisicas e texturais do solo, como distribui¢do do tamanho
das particulas e estrutura (Meneses; Almeida, 2012; Meneses; Almeida; Baptista, 2019).

Com relagdo a interagdo microscopica, ondas de pequeno comprimento possuem

elevada energia, o que possibilita uma intensa interacdo microscopica da matéria e define as
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relagdes entre absor¢cdo e reflectdncia. Essas interacdes sdo identificadas nos espetros pelos
picos de queda da reflectdncia, de modo que sdo responsaveis pelas feigdes de absor¢do no
espectro, sendo dependentes da composi¢do mineral e organica do solo. Esse fendomeno
microscopico esta relacionado a absor¢do da radiacao eletromagnética por &tomos e moléculas
(Meneses; Almeida; Baptista, 2019; Rizzo et al., 2021).

O comportamento espectral do solo tem sido avaliado com sucesso nas ultimas
décadas, sendo essencial para isso aplicar metodologias que possibilitem interpretar
adequadamente o espectro do solo. A analise descritiva da assinatura espectral ¢
imprescindivel para a caracterizagdo do solo, a sua aplicagdo ¢ baseada na observagdo de
alguns aspectos na curva espectral, como: intensidade de reflectancia (albedo), caracteristicas
de absorcao (profundidade e amplitude) e forma espectral. A avaliacao de altera¢des na curva
permite diferenciar os solos de acordo com sua intensidade de reflectancia (Dematté, 2002).

A espectroscopia de reflectdncia tem possibilitado estimar importantes
propriedades do solo, tendo ocorrido nos anos de 1960 a determinac¢do de diversos padrdes de
curvas espectrais do solo, as quais apresentaram grande relacdo com seus constituintes
(Meneses; Almeida; Baptista, 2019). Nessa perspectiva, a espectroscopia vem sendo bastante
empregada para avaliar os teores de argila, areia e carbono no solo (Rizzo et al., 2021).

O carbono organico do solo foi estimado com sucesso por Ribeiro et al. (2021)
usando a reflectancia espectral e métodos de regressdo, tendo o método de minimos
quadrados parciais alcancado a predicao mais robusta. J& a textura do solo foi predita por
Coblinski et al. (2020) a partir da analise da assinatura espectral, tendo sido observado que a
previsdo da textura foi mais precisa quando se combinou profundidades de avaliacao.

Em estudo para avaliar a eficicia do vis-NIR-SWIR e MIR na caracterizagdo e
predicdo de alguns atributos do solo, Naimi et al. (2022) verificaram que o Vis-NIR-SWIR
alcancou resultados melhores para textura do solo que o MIR. Contudo, essas faixas nao
possibilitaram predizer a salinidade do solo. Ja para os minerais, a predi¢do € possivel a partir
da associag¢do da espectroscopia com a regressdo linear multipla (Dematté; Terra, 2014). As
feicdes de absor¢dao dos minerais podem ser observadas na faixa vis-NIR-SWIR, todavia, as
principais feigdes e outras caracteristicas estdo no MIR (Silvero et al., 2020).

A espectroscopia gera inimeros dados espectrais que sdo organizados em um
grande banco de dados, chamado de biblioteca espectral. Atualmente, existem no mundo
diversas bibliotecas espectrais que reunem dados de solos de diferentes paises. No Brasil, a
biblioteca Brazilian Soil Spectral Library (BSSL) teve inicio em 1995 visando criar um banco

de dados dos solos do pais a partir de uma rede de colaboradores (Dematté ef al., 2019).
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2.4  Fatores que influenciam o comportamento espectral do solo

O comportamento espectral do solo ¢ influenciado por constituintes minerais €
organicos, como a matéria organica, filossilicatos, Oxidos, umidade e a distribui¢do
granulométrica (Dalmolin et al., 2005). Esses atributos sao classificados como relagdes
espectrais de primeira ordem e influenciam diretamente o espectro, modificando a intensidade

de reflectancia e as caracteristicas de absorcao (Terra et al., 2021).

2.4.1 Efeito da matéria orgdnica, mineralogia, umidade e granulometria

A matéria orgédnica do solo (MOS) ¢ formada por uma mistura complexa de
substancias de carbono com diferentes caracteristicas fisicas e quimicas. No solo ha
predominio de material organico nas camadas superficiais, ao passo que nas camadas
subsuperficiais a concentracdo de matéria organica ¢ menor, uma vez que na superficie do
solo ha aporte constante, tanto pela deposi¢do de material vivo, como pela decomposicao.
Esse material ¢ um constituinte primario da coloragdo, de modo a alterar a cor da matriz
edafica, possui estreita relacdo com a reflectdncia do solo. Quando o material organico
aumenta, a energia refletida do solo diminui, visto que a matéria organica absorve energia
(Madeira Netto; Baptista, 2000; Sousa Junior et al., 2008).

O efeito da matéria organica na assinatura espectral do solo pode ser verificado
pela sua remocao da composicao pedologica, o que promove aumento do fator de reflectancia
(Dematté; Epiphanio; Formaggio, 2003). Todavia, ressalta-se que a modificacdo da
reflectancia pela remocdo da matéria organica tende a ser mais perceptivel nos solos de
textura mais grosseira, quando comparados aos de textura mais argilosa, em virtude da
formagdo de uma camada organica protetora ao redor das particulas grosseiras. Assim, nos
solos arenosos hd diminui¢ao da reflectancia com a presenga da matéria organica (Dematté et
al., 2005).

A influéncia do material orginico ¢ tdo forte na reflectincia do solo que pode até
mesmo mascarar a agdo de outros constituintes sobre o espectro, conforme verificado por
Dematté et al. (2006) em que o horizonte A do solo exibiu menor refletancia e bandas de
absorcdo mais atenuadas em relacdo aos horizontes subsuperficiais, devido a maior
concentragdo desse material na superficie. A MOS pode mascarar os efeitos dos 6xidos de
ferro do solo e afetar as bandas de absor¢ao deste constituinte e, consequentemente, interferir

na resposta espectral (Dematté; Epiphanio; Formaggio, 2003).
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Além do teor de matéria organica, a sua composicdo também influencia a
reflectancia do solo. Estudos evidenciam que a variagdo de reflectincia entre solos com teor
semelhante de matéria organica se deve as diferentes composi¢des do material, contudo, esta
hipdtese ndo tem confirmagdo experimental. Apesar disso, analises espectrais de laboratorio
indicam que as caracteristicas de reflectancia dos 4cidos huimicos e fulvicos sdo diferentes,
embora essas relagdes ndo sejam bem compreendidas (Meneses; Almeida; Baptista, 2019).

Com relacdo aos minerais, a caracterizagdo mineralogica tem grande importancia
na avaliacdo da assinatura espectral dos solos, uma vez que os minerais conferem vdrias
feicdes de absorcao e influenciam o albedo (Dalmolin et al., 2005). Tendo em vista que o solo
¢ um sistema complexo, pode ocorrer mistura de minerais, em que as bandas de absor¢do
ficam muito préximas ou até se apresentam sobrepostas. Diante disso, para caracterizar esses
materiais € preciso observar a dissimetria existente na curva, a profundidade das bandas de
absorc¢do e a presenc¢a de absor¢des secundarias (Meneses; Almeida; Baptista, 2019).

A resposta espectral dos minerais varia em fun¢do de sua composi¢do. Minerais
transparentes como o quartzo, possuem alta intensidade de reflectdncia por ndo absorverem
energia (Rizzo et al., 2021). Os minerais de argila do tipo filossilicato, que sdo divididos
quanto a sua estrutura em 2:1 e 1:1, apresentam bandas de absorcao, principalmente, em trés
comprimentos de onda do SWIR: 1400, 1900 e 2200 nm. Em geral, estas fei¢des estdo ligadas
a transicdo do modo vibracional de um estado de energia para outro nivel de energia
(overtones) e as combinagdes de vibragdes fundamentais do MIR (Gent et al., 2010).

O argilomineral do tipo 1:1 mais comumente encontrado nos solos tropicais ¢ a
caulinita, suas principais feicdes de absorcdo estdo associadas as vibragdes moleculares das
hidroxilas, as quais sd@o mais visiveis nos comprimentos de onda de 1400 e 2200 nm.
(Madeira Netto; Baptista, 2000). Ja os argilominerais do tipo 2:1, como por exemplo, as
esmectitas, sdo tipicos de solos menos intemperizados. Dematté et al. (2006) verificaram em
um Vertissolo que houve predominio de esmectita como filossilicato do tipo 2:1, tendo sido a
feicdo caracterizada por picos de absor¢ao em 1400 e 1900 nm. Na faixa do MIR as feigdes
dos argilominerais ocorrem entre 3620-3484 cm™ (Terra et al., 2021).

De modo semelhante aos argilominerais 2:1 e 1:1, os 6xidos de ferro, também
possuem grande influéncia no comportamento espectral dos solos (Cezar et al., 2013). A
goethita e a hematita sdo oOxidos frequentemente encontrados nos solos tropicais e
subtropicais, e sdo oriundos da oxidacdo do ferro (Fe™®) presentes nos minerais primarios
durante a formacao do solo. Esses 0xidos possuem diferentes caracteristicas de absorc¢des

espectrais nas faixas do ultravioleta e do vis-NIR (Meneses; Almeida; Baptista, 2019).
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A hematita e a goethita estdo fortemente ligadas a cor do solo e exibem respostas
espectrais em comprimentos de onda diferentes em virtude de suas caracteristicas estruturais
especificas (Genu et al., 2010). Suas feigdes de absor¢do sdo caracterizadas pelas posigdes
centrais em torno de 480 nm para goethita e 513 nm para hematita e pelas variagdes de
intensidade e amplitude das feicdes (Dematté; Terra, 2014). As feicdes espectrais desses
oxidos observadas no espectro vis-NIR estdo principalmente ligadas a interagcdes entre a
radiagdo e os ions na estrutura cristalina dos 6xidos (Rizzo et al., 2021).

Outros minerais que pertencem ao grupo de oxidos de Fe ¢ a magnetita e a
ilmenita, que sdo considerados como minerais acessorios. Esses Oxidos possuem fei¢des
espectrais chamadas de opacas e os seus valores de reflectancia, geralmente, sdo menores que
5% no espectro Vis-NIR; com isso, sua presenca no solo reduz a intensidade de reflectincia.
Além disso, os solos tropicais possuem Oxidos de aluminio, sendo a gibsita o mais comum.
Sua principal feigdo espectral ocorre em 2265 nm (Madeira netto; Baptista, 2000) e entre
3529-3394 cm™, devido a vibragio molecular das hidroxilas (Mendes ef al., 2022).

No que se refere ao efeito da dgua sobre o espectro, os solos imidos possuem
aparéncia mais escura do que quando estdo secos. Tal fato ¢ resultado das caracteristicas de
absor¢ao da dgua que causam reducdo na reflectancia da radiacdo incidente no espectro
(Epiphanio et al., 1992). O aumento do teor de umidade do solo reduz a reflectancia devido as
reflexdes internas no filme de 4dgua que recobre as particulas do solo; por isso, os solos
umidos possuem aparéncia mais escura (Dewitte et al., 2012).

A agua presente no solo ¢ responsavel pela reducao do albedo em todas as regides
do espectro. A reflectancia do solo ¢ afetada pelas bandas de absor¢ao centradas no espectro
em 760, 970, 1.190, 1.450 e 1.940 nm (Madeira Netto; Baptista, 2000). Contudo, ressalta-se
que, de modo geral, ndo ocorrem grandes alteracdes na forma das curvas espectrais em funcao
da mudanca de umidade, com excecdo das feigdes tipicas de absor¢ao de agua em 1400 e
1900 nm (Dalmolin et al., 2005).

A agua ¢ considerada um dos atributos que possui maior interferéncia nos dados
espectrais em virtude do efeito que possui sobre a reflectancia (Dematté et al., 2006). Desse
modo, a umidade do solo pode afetar a sua assinatura espectral, conforme foi verificado por
Silvero et al. (2020) em estudo do efeito da 4gua, da matéria organica e de formas de Fe no
espectro do infravermelho médio. Os autores observaram que a adicdo de agua ao solo
mascarou diversas caracteristicas de absorcdo e promoveu reducdo da intensidade de
refletancia de 3700 cm™ para 2700 cm™ no MIR.

Quanto ao efeito da granulometria, a reflectancia do solo ¢ afetada pelo tamanho e
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arranjo que as particulas assumem em relagdo ao ar e a dgua do solo (Epiphanio ef al., 1992).
Nesse sentido, a intensidade de reflectancia varia em fungao da distribuigdo do tamanho das
particulas, da estrutura e da sua rugosidade (Rizzo et al., 2021). A ocorréncia de superficies
mais rugosas no solo aumenta o sombreamento e a reflectancia, atenuando a intensidade do
espectro. Por outro lado, a redugdo da rugosidade da superficie promove ligeiro aumento da
reflectancia (Dewitte et al., 2012).

Em regra, o tamanho das particulas do solo possui relacdo inversa com a
reflectdncia, de modo que quanto menor o tamanho das particulas maior sera o albedo
(Meneses; Almeida; Baptista, 2019). Tal fato ocorre em virtude de os grdos maiores
produzirem superficies mais irregulares, com sombreamentos e maior retroespalhamento
interno da luz, enquanto particulas menores criam superficies mais uniformes, com menor
quantidade de poros para reter a luz incidente (Sousa Junior et al., 2008).

Ja quando se refere a composi¢do das particulas, solos que possuem menor teor de
argila, ou seja, com predominancia de areia, apresentam maior valor de energia refletida,
enquanto solos com maior quantidade de argila possuem baixo albedo (Dematté; Terra, 2014).
Esse efeito das particulas primarias no comportamento espectral foi constatado por Sousa
Junior et al. (2008), em que solos da mesma ordem taxonomica, contudo de classes texturais
distintas, exibiram diferentes comportamentos espectrais, de modo que aqueles com textura
mais arenosa apresentaram maior albedo ao longo da curva espectral.

Além do efeito da granulometria sobre o espectro, o comportamento espectral do
solo ¢ influenciado pelos minerais que compdem as particulas argila e areia. A baixa
reflectancia de solos argilosos € resultado, especialmente, da maior formagao de agregados no
solo e da presenga de minerais opacos, 0 que promove maior absor¢cdo da energia incidente
(Bellinaso et al., 2010). Para solos arenosos, a maior intensidade da refletdncia ocorre em

virtude da silica presente no mineral quartzo (Terra ef al., 2018).

2.5  Processamento de dados espectrais e estimativa dos atributos do solo

As analises espectrais produzem uma grande quantidade de dados acerca do solo.
Diante disso, metodologias tém sido aplicadas para extrair informacdes tuteis do espetro. As
técnicas de pré-processamento dos dados brutos sao comumente usadas a fim de se aumentar
a eficiéncia das analises e de reduzir o elevado nimero de dados, os quais podem prejudicar o
potencial dos modelos de predi¢do dos atributos (Souza; Madari; Guimaraes, 2012).

As técnicas de pré-processamento auxiliam na melhoria da interpretacao da
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assinatura espectral e na obtencdo de modelos preditivos mais precisos, por meio da reducao
do ruido no espectro, melhoraria das feigdes espectrais relacionadas aos atributos do solo,
remoc¢ao dos efeitos de espalhamento de luz e diminuicdo da dimensionalidade dos dados.
Dentre as técnicas mais usadas pode-se citar: transformacdo em absorbancia, correcao de
espalhamento multiplicativo, variagdo normal padrdo, transformagdo de Savitzky-Golay,
filtros de média moével, remogao de continuo e corre¢ao de linha de base (Rizzo et al., 2021).

Ressalta-se que ndo existe um método de pré-processamento Unico que seja tido
como ideal para qualquer situacdo. O emprego das técnicas de processamento pode até
mesmo ndo promover nenhuma melhoria no desempenho preditivo, conforme constatado por
Mendes et al. (2022), em que os modelos de predi¢do com dados pré-processados ou com
dados de infravermelho médio brutos ndo exibiram diferengas razoaveis, indicando que os
espectros processados ndo conseguiram reduzir a relagao sinal-ruido.

ApOs o pré-processamento dos dados espectrais, realiza-se a divisdo do conjunto
de informagdes visando desenvolver os modelos de predi¢do. As amostras sdo separadas em
dois grupos: um destinado a treinar o modelo e outro a testar. Normalmente, utiliza-se cerca
de 70% dos dados para o treinamento e 30% para teste. A etapa de treinamento tem como
finalidade construir um modelo empirico multivariado capaz de associar os dados espectrais
as caracteristicas do solo de interesse, possibilitando a predi¢ao dos atributos (FAO, 2022).

Nos dados selecionados para treinamento, aplicam-se métodos estatisticos que
permitem aos modelos estimar quantitativamente os atributos. Essa analise fundamenta-se na
hipotese de que ha uma relagdo direta entre a concentracao de determinado constituinte € uma
propriedade espectral correspondente. A relacdo matematica formada entre esses dois fatores é
denominada de equagdo de calibragdo, a qual ¢ gerada a partir dos dados de treinamento e
usada para estimar a concentracdo de novas amostras, desde que os espectros que sejam
obtidos em equipamentos ¢ condi¢des semelhantes (Meneses; Almeida; Baptista, 2019).

A modelagem de calibragdo ¢ desenvolvida a partir das relagdes entre os atributos
do solo, determinados em analises laboratoriais tradicionais, € os dados obtidos nas analises
espectrais. Essa calibragdo ¢ feita por meio de métodos de regressdo multivariada ou de
aprendizado de maquina, como random forest, redes neurais e deep learning, entre outros.
Dentre as técnicas de estatistica multivariada destacam-se a regressao linear multipla (MLR),
a regressao por componentes principais (PCR) e a regressdo por minimos quadrados parciais
(PSLR) (Meneses; Almeida; Baptista, 2019; Shepherd ef al., 2022).

Os modelos desenvolvidos para a predi¢do de atributos do solo possibilitam

estimar variagdes em sua composicao, sendo o desempenho dessas predi¢des influenciado
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pela populacdo amostral e pela representatividade dos dados analisados. Conforme
observaram Paiva ef al. (2022) que, de modo geral, os modelos calibrados com conjunto de
dados locais apresentaram melhor desempenho do que aqueles com amostras regionais ou
nacionais. Esses resultados sugerem que, independentemente do nimero de amostras, a
qualidade e representatividade dos dados sdo imprescindiveis para gerar modelos confidveis.
O desempenho dos modelos ¢ avaliado por meio de parametros estatisticos, como
o erro médio (ME), a raiz do erro quadratico médio (RMSE) e o coeficiente de determinagdo
(R*) (FAO, 2022). Outro indicador amplamente empregado na avaliagio de modelos
preditivos € a razdo de desempenho para intervalo interquartil (RPIQ). Na literatura ainda nao
h4 um valor critico definido para o RPIQ; com isso, tém sido adotadas referéncias baseadas
no parametro razio de desempenho do desvio (RPD). De modo geral, valores elevados de R*
e RPIQ, associados a valores reduzidos de RMSE, indicam previsdes com qualidade de boa a

excelente (Luce et al., 2022).
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3 CAPITULO I - CARACTERIZACAO ESPECTRAL DO VISIVEL AO
INFRAVERMELHO MEDIO DE SOLOS DO NORDESTE BRASILEIRO

RESUMO

O solo ¢ um recurso essencial para a vida, tornando indispensavel sua caracterizacdo e a
identificacdo da distribuicao espacial. A espectroscopia de reflectdncia ¢ uma ferramenta
eficaz para potencializar a caracterizacdo e auxiliar na classificacdo de solos, especialmente
em paises de grandes dimensdes. Nesse sentido, o objetivo deste trabalho foi explorar o
potencial dos espectros vis-NIR-SWIR e MIR para caracterizar solos do Nordeste brasileiro
quanto aos seus comportamentos espectrais, bem como identificar variagcdes espectrais e
similaridades dos perfis de solo pertencentes a diferentes classes. Foram avaliadas 114
amostras de 24 perfis de solos oriundos de municipios do Ceara. O solo foi avaliado com
metodologia convencional de quimica umida para determinar os atributos fisicos e quimicos,
e com metodologia espectral para avaliar sua reflectancia nas faixas do visivel, infravermelho
proximo, infravermelho de ondas curtas (vis-Nir-SWIR) e infravermelho médio (MIR). Os
dados espectrais foram pré-processados por meio da suavizagdo com o filtro Savitzky-Golay,
e o comportamento espectral das curvas foi caraterizado por perfil de solo. Foi avaliada a
distribuicdo de frequéncia das classes pedologicas, e os resultados das andlises convencionais
foram submetidos a estatistica descritiva. Além disso, foi realizada a analise de correlacao
multivariada entre os atributos do solo e os valores de reflectancia espectral suavizados. A
analise de componentes principais (ACP) foi efetuada nos dados espectrais visando reduzir a
dimensdo dos dados no espaco multivariado. Em seguida, com os escores resultantes da ACP
foi feito a andlise de agrupamento usando o algoritmo de classificacdo ndo supervisionada
Fuzzy K-médias. Os Neossolos e Argissolos foram os solos com maior representagao nesse
estudo. O comportamento espectral dos perfis apresentou padrdes distintos em fungdo da
ordem de solo. A classificagdio ndo supervisionada agrupou amostras com base nas
caracteristicas dos horizontes. A faixa vis-NIR-SWIR distinguiu seis classes de espectros do
solo, ao passo que na faixa MIR houve a separagdo em nove classes de espectros. Esse estudo

comprova a eficiéncia da espectroscopia na caracterizacao e distingdo de classes de solo.

Palavras-chave: espectroscopia; comportamento espectral; agrupamento; horizonte do solo.
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ABSTRACT

Soil is an essential resource for life, making its characterization and spatial distribution
identification indispensable. Reflectance spectroscopy is an effective tool for enhancing
characterization and assisting in soil classification, especially in large countries. In this sense,
the objective of this study was to explore the potential of vis-NIR-SWIR and MIR spectra to
characterize soils in Northeast Brazil in terms of their spectral behavior, as well as to identify
spectral variations and similarities in soil profiles belonging to different classes. A total of 114
samples from 24 soil profiles from municipalities in Ceard were evaluated. The soil was
evaluated using conventional wet chemistry methodology to determine its physical and
chemical attributes, and spectral methodology to evaluate its reflectance in the visible, near-
infrared, short-wave infrared (vis-Nir-SWIR), and mid-infrared (MIR) ranges. The spectral
data were preprocessed using Savitzky-Golay smoothing, and the spectral behavior of the
curves was characterized by soil profile. The frequency distribution of the soil classes was
evaluated, and the results of the conventional analyses were subjected to descriptive statistics.
In addition, multivariate correlation analysis was performed between soil attributes and
smoothed spectral reflectance values. Principal component analysis (PCA) was performed on
the spectral data to reduce the dimension of the data in the multivariate space. Then, with the
scores resulting from the PCA, cluster analysis was performed using the unsupervised Fuzzy
K-means classification algorithm. Neosols and Argisols were the most represented soils in this
study. The spectral behavior of the profiles showed distinct patterns depending on the soil
order. The unsupervised classification grouped samples based on the characteristics of the
horizons. The vis-NIR-SWIR band distinguished six classes of soil spectra, while the MIR
band separated them into nine classes. This study proves the efficiency of spectroscopy in

characterizing and distinguishing soil classes.

Keywords: spectroscopy; spectral behavior; clustering; soil horizon.
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3.1 Introducao

O solo possui papel essencial para a existéncia da vida na Terra, desenvolvendo
uma ampla gama de servigos ecossistémicos e atuando como um recurso basico para diversas
atividades humanas. Dada a importancia desse recurso natural, existem na atualidade diversas
aplicacdes que demandam um elevado volume de informagdes edaficas com alta resolucdo
(Ge; Wadoux; Peng, 2022). Diante disso, ¢ cada vez mais indispenséavel caracterizar o solo e
conhecer sua distribui¢do espacial, visando promover o uso sustentdvel e o manejo adequado.

Tradicionalmente, o solo é caracterizado por meio de analises laboratoriais de
quimica umida, as quais servem de base para a classificagdo pedologica. Contudo, tais
analises sdo onerosas, demoradas e possuem potencial de causar contaminagao ambiental pela
geragdo de residuos perigosos (Mendes et al., 2022). Essas limitagcdes sdo ainda mais
intensificadas no contexto dos solos brasileiros. Por ser o maior pais da América do Sul e o
quinto maior do mundo, o Brasil enfrenta um grande desafio para a caracterizacdo e o
mapeamento pedologico de sua extensa area territorial (Dematté et al., 2019).

Nessa perspectiva, a espectroscopia de reflectdncia tem se destacado como
alternativa promissora e um método eficiente em estudos de génese, monitoramento e gestao
do solo (Taghdis; Farpoor; Mahmoodabadi, 2022). Esta técnica possibilita estimar
simultaneamente os atributos fisicos, quimicos e mineraldgicos a partir de uma Unica leitura
espectral, permitindo a aquisi¢do rapida de dados do solo, de forma ndo destrutiva e sem o uso
de reagentes quimicos (Ge; Wadoux; Peng, 2022). Deste modo, se consolida como uma
tecnologia eficiente, de baixo custo e ambientalmente sustentavel.

A analise do solo com espectroscopia ¢ realizada nas faixas do visivel (vis: 350-
750 nm), do infravermelho proximo (NIR: 750-1100 nm), do infravermelho de ondas curtas
(SWIR: 1100-2500 nm) e do infravermelho médio (MIR: 2500-25000 nm ou 4000-400 cm™)
(Mendes et al., 2022). Nestas regides, as assinaturas espectrais possuem relagdo direta com a
composicao e a estrutura molecular dos componentes do solo, o que torna possivel identificar
e quantificar os atributos pedolédgicos (Rizzo et al., 2021).

Diante desse contexto, a espectroscopia se fortalece como ferramenta eficaz para
caracterizar e auxiliar na classificagdao dos solos, € como técnica particularmente benéfica em
paises de grandes dimensdes, como o Brasil, cuja demanda por levantamentos pedolégicos em
larga escala exige metodologias rapidas e de alta capacidade. O territério brasileiro, por sua
vez, abriga uma grande variedade de solos, sendo a regido Nordeste um nitido exemplo desta

diversidade pedologica. Esta regido abriga diferentes biomas, destacando-se a Caatinga, o
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unico bioma exclusivamente brasileiro. Sob um clima semiarido e com forte exploragdo, os
solos deste ecossistema sdo muito susceptiveis a degradagdo (Souza; Leite; Medeiros, 2021).

A Caatinga hospeda desde solos muito intemperizados até pouco evoluidos, sendo
comum a ocorréncia de solos pouco profundos e com baixo desenvolvimento, formados
principalmente por processos pedogenéticos de argiluviagdo, salinizagdo e sodificagdo (Souza,
et al., 2022). Todavia, do ponto de vista cientifico, esses solos sdo subexplorados. O uso da
espectroscopia de reflectincia em estudos pedologicos no semiarido brasileiro ainda ¢
incipiente, sobretudo na faixa do infravermelho médio, cujo potencial para a predi¢ao de
atributos € pouco investigado (Santos et al., 2020). Assim, persiste uma lacuna expressiva em
estudos relativos a pedologia espectral, especialmente em ambientes semidridos (Taghdis;
Farpoor; Mahmoodabadi, 2022).

Diante destes aspectos, a aplicagdo de técnicas espectrais em uma regido com
elevada heterogeneidade pedoldgica, como o Nordeste brasileiro, representa uma
oportunidade estratégica de promocdo da conservacdo do solo e de avangco metodoldgico.
Neste sentido, parte-se da hipotese de que € possivel discriminar ordens de solos baseado em
espectros de reflectancia nas faixas do visivel ao infravermelho médio, uma vez que estes

contém feigdes espectrais associadas a atributos relevantes para a classificagao pedologica.

3.1.1. Objetivos

O objetivo principal deste trabalho foi explorar o potencial dos espectros de
reflectancia vis-NIR-SWIR e MIR para caracterizar solos do Nordeste brasileiro quanto aos
seus comportamentos espectrais, bem como identificar variagdes espectrais e similaridades
dos perfis de solo pertencentes a diferentes classes.

Como objetivos especificos foram almejados:

e Realizar uma descri¢cdo qualitativa das caracteristicas espectrais dos solos;
e Determinar faixas espectrais com maior expressao para os atributos pedologicos;

e Identificar grupos de solos com caracteristicas espectrais semelhantes.

3.2 Material e métodos

Esta se¢do apresentard o banco de dados avaliado, a metodologia empregada para

as andlises dos solos e as técnicas estatisticas aplicadas visando a avaliagdo dos dados

gerados.
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3.2.1 Area de estudo e banco de dados do solo

As amostras de solos utilizadas neste estudo compde o Levantamento de
reconhecimento de média intensidade dos solos do Estado do Ceara (2024), o qual reune
informagoes detalhadas dos perfis de solos analisados. Os solos integram a area 7 do estudo e
sdo oriundos de 13 municipios do Ceard que estdo situadas nas mesorregides Noroeste

Cearense, Norte Cearense ¢ Metropolitana de Fortaleza (Figura 1).

Figura 1 — Mapa da area de estudo localizada no estado do Cearé, Brasil
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Fonte: elaborada pela autora.

Os solos foram coletadas na ultima etapa do Levantamento. No total, foram
avaliadas 114 amostras correspondentes aos horizontes dos solos, provenientes de 24 perfis
pedoldgicos, os quais representavam os solos de maior ocorréncia no Nordeste. Estes perfis
compreendem 9 ordens de solo e foram classificados até o quarto nivel categérico do Sistema
Brasileiro de Classificagdo do Solo (Santos et al., 2018), sendo esta etapa conduzida pela
equipe responsavel pela realizacdo do Levantamento de solos. Posteriormente, os perfis foram
reclassificados para o Sistema Brasileiro de Classificagdo do Solo (Santos et al., 2025),
visando apresentar neste estudo a versao mais recente da classificagao dos solos.

Os materiais de solo avaliados foram adquiridos no acervo do Laboratério de

Analises de Solos, Aguas, Tecidos e Adubos - Convénio FUNCEME/UFC, localizado no
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Departamento de Ciéncia do Solo da Universidade Federal do Ceard (UFC). As analises de
quimica umida foram realizadas pela equipe técnica do referido laboratorio. J& as andlises
espectrais foram conduzidas pelos pesquisadores deste estudo. A faixa vis-NIR-SWIR foi
avaliada no Laboratorio de Geoprocessamento do Departamento de Engenharia Agricola,
enquanto a faixa MIR foi processada no Laboratorio Multiaparelhos do Departamento de
Ciéncia do Solo. Ambos os laboratorios situam-se no Campus Pici, UFC.

Um resumo com as etapas metodologicas das andlises realizadas neste estudo
pode ser visualizado na Figura 2. O detalhamento de cada etapa sera apresentado

posteriormente na se¢do de metodologia das analises.

Figura 2 - Fluxograma da metodologia de trabalho para as analises do solo

Banco de dados: Laboratério de analise de solos, aguas, tecidos vegetais e
adubos
| Anailises imidas | Analises espectrais
Atributos fisicos e Cotrelacio atributos x 3‘515}“1};03?1{ ¢ MIR
quimicos espectros ( )~ 1m)
- Pré-processamento
Classificacéo solo Curva espectral: perfil -
(subgrupos) horizontes
| Estatistica descritiva | Andlise de componentes
principais
Clusterizacdo K-médias: Escores vis-SWIR o
_ - Espectro grupos; R — MIR
Estatistica grupos.

Fonte: elaborada pela autora.

3.2.2 Analises laboratoriais umidas

Para iniciar as analises, as amostras de solo foram dispostas na sombra e ao ar
para secagem, posteriormente foram destorroadas e tamisadas em peneira com malha de
abertura de 2 mm, para obten¢do da terra fina seca ao ar (TFSA). Apos a aquisicdo da TFSA,

as amostras foram avaliadas com a metodologia tradicional de quimica umida e por
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espectroscopia de reflectancia.

As andlises tradicionais foram realizadas conforme a metodologia do Manual de
M¢étodos de Analise de Solo da Embrapa (Teixeira et al., 2017), tendo sido avaliado 12
atributos do solo. Para os atributos quimicos, o carbono organico foi determinado por
oxidacao com dicromato de potassio; o nitrogénio total foi analisado pela oxidagdo com acido
sulfurico; o célcio e magnésio trocdveis foram extraidos com solu¢do de KCl; o potéssio e
sodio trocaveis foram extraidos com Mehlich I; o pH foi determinado em agua, com relagdo
solo-adgua de 1:2,5; a condutividade elétrica (CE) foi avaliada a partir da pasta de saturagdao do
solo; e a percentagem de saturagdo por sodio (PST) foi calculada a partir dos valores de sédio
e de capacidade de troca de cations.

Para os atributos fisicos, a granulometria do solo (argila, silte e areia) foi
determinada com o método da pipeta realizando a dispersao da amostra, seguida da separagao

das fragdes do solo por peneiramento e da sedimentacao das particulas em meio liquido.

3.2.3 Anadlise espectral

Para realizar as andlises espectrais do solo, as amostras de terra fina seca ao ar
foram submetidas ao processo de secagem em estufa com circulagdo forcada de ar em
temperatura de 45°C durante 24 horas, a fim de homogeneizar os efeitos da umidade do solo
(Dematté et al., 2014). Os dados espectrais vis-NIR-SWIR e MIR foram obtidos por meio de
metodologias distintas.

As amostras de solo para leitura espectral na faixa vis-NIR-SWIR foram
acondicionadas em recipiente de polipropileno preto, com 5 cm de diametro e 1,5 cm de
altura. Os dados espectrais de reflectdncia bidirecional foram obtidos com o auxilio de uma
sonda de contato (Hi-Brite Contact Probe) e de um espectrorradidmetro FieldSpec Pro FR 3
(Analytical Spectral Devices, Boulder, Colorado, USA) (Figura 3). Esse equipamento realiza
leituras na faixa do visivel ao infravermelho de ondas curtas (350 — 2500 nm), com resolugdo

espectral de 3 nm e 10 nm reamostrados para 1nm, e um campo de visao de 25°.
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Figura 3 — Equipamento de aquisi¢cao dos dados espectrais vis-NIR-SWIR

Fonte: A autora.

Para a aquisicao dos dados espectrais vis-NIR-SWIR foi realizada a calibragao do
sensor com uma placa branca (Spectralon), a qual ¢ considerada como padrio de referéncia de
100% de reflectancia e ¢ empregada no calculo do fator de reflectancia bidirecional (FRB). A
calibracdo foi efetuada a cada 20 minutos por meio da leitura da placa padrdo. Foram
realizadas trés leituras em diferentes pontos da superficie do material, de modo que a amostra
foi girada aproximadamente 120° entre cada leitura para se obter uma boa representatividade.
Com isso, cada amostra foi caracterizada pela média aritmética simples das trés leituras.

Para a leitura espectral na faixa MIR foi necessario efetuar uma etapa extra de
preparo do solo visando obter particulas mais finas. Para tanto, antes da secagem das amostras
em estufa foi realizada uma trituragdo adicional em almofariz de agata. A leitura no
infravermelho médio foi feita usando o infravermelho com transformada de Fourier FTIR
Cary 630 (Agilent Technologies) equipado com c difusa (DRIFTS). O equipamento executa
leituras espectrais na faixa MIR de 2500 a 15000 nm (4000 a 650 cm™), com resolugio
espectral < 2 cm™' e abriga internamente os componentes Opticos mais importantes, como o

laser, fonte de luz e detector (Figura 4).
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Figura 4 — Equipamento FTIR Cary 630 para aquisi¢ao de dados espectrais MIR

As amostras de solo foram lidas em triplicata para a obtencdo de dados espectrais
na faixa MIR, sendo a reflectdncia da amostra obtida pela média simples das trés repetigoes.
Para cada leitura foi utilizado aproximadamente 1 cm® de solo, que foi colocado em um
suporte proprio do acessorio DRIFTS. Antes de cada medida foi efetuada a calibragdo do
sensor, por meio da leitura da placa de referéncia que estd posicionada na primeira posi¢ao do
suporte. A referéncia consiste de um espelho dourado de reflectancia difusa que auxilia na

remocao da radiacao de background do espectro (Figura 5).

Figura 5 - Suporte do acessorio DRIFTS com espelho de referéncia e amostras de solo

Fonte: A autora.

Apds a obtencdo dos espectros, os dados de reflectancia bruta foram submetidos
ao pré-processamento de filtragem (suavizagdo) Savitzky-Golay (SG), a fim de suavizar os
ruidos do espectro (Savitzky; Golay, 1964). O emprego dessa técnica resultou na perda das

cinco janelas iniciais e finais das faixas espectrais avaliadas, de modo que a regido vis-NIR-
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SWIR apresentou 2141 feicdes e a faixa MIR exibiu 1788 feicdes.

O comportamento espectral dos 24 perfis coletados, bem como cada horizonte do
perfil, foi analisado individualmente. A analise foi realizada baseando-se na metodologia de
interpretagdo morfologica do espectro de reflectancia, descrita por Dematté et al. (2014).
Nesse sentido, foram avaliados os seguintes critérios: intensidade da curva espectral, forma
geral da curva ao longo do espectro, caracteristicas de absor¢do e comparagdo das curvas

entre horizontes do mesmo perfil pedologico.

3.2.4 Anadlise estatistica

As andlises estatisticas, o processamento espectral e a elaboracdo dos graficos
foram realizados no software R (R Core Team, 2024). A distribui¢do de frequéncia das classes
pedolégicas foi computada para determinar a propor¢ao das ordens de solos estudadas. Em
seguida, os resultados das andlises fisicas e quimicas convencionais foram submetidos a
estatistica descritiva, avaliando-se os dados por classe de solos.

Foi avaliada, também, a normalidade dos atributos por meio do teste de hipotese
Shapiro-Wilk a 5%, e diante da ndo normalidade dos dados, aplicou-se a anélise de correlacao
multivariada. A correlagdo foi realizada entre os atributos do solo e os valores de reflectancia
suavizados, visando avaliar a direcdo e a intensidade da interacao entre os atributos estudados

e as faixas espectrais.

3.2.5 Analise de componentes principais e agrupamento dos dados espectrais

A analise de componentes principais (ACP), com centro médio, foi aplicada nos
dados espectrais vis-NIR-SWIR e MIR suavizados com o filtro SG. Essa anélise foi realizada
visando possibilitar a visualizagdo de estruturas e padrdes de distribui¢ao dos dados e reduzir
a dimensao dos dados no espago multivariado para potencializar a analise de agrupamento.

Para a analise de agrupamento dos dados espectrais foi empregado o algoritmo de
classificagdo ndo supervisionada Fuzzy K-médias (FKM). Este algoritmo foi aplicado sobre
os cinco primeiros escores resultantes da ACP, a fim de se obter o agrupamento das amostras
de solo e de verificar a existéncia de padroes de aglomeragdo. A técnica FKM confere um
grau de associacdo (pertinéncia) fuzzy para cada amostra, baseando-se na distancia ao centro
do cluster. Os graus de associacdes variam de 0 a 1 (Costa et al., 2022).

O numero adequado de clusters na analise de agrupamento foi determinado com
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base nos indices coeficiente de parti¢do e entropia de particdo (Bezdek, 1974). Esses indices
de validade usam somente a pertinéncia dos padrdes ao cluster para obter seu valor, sendo
desejado para o coeficiente de particdo valor mais proximo a zero e para o de entropia mais
proximo a um (Pal; Bezdek, 1995). Os grupos gerados tiveram seus atributos fisico-quimicos

analisados com estatistica descritiva. Esta estatistica dos grupos associada a analise dos

autovetores resultantes da ACP, apoiaram a compreensao dos agrupamentos formados.

3.3 Resultados e discussao

Nesta se¢do serdo caracterizados os atributos fisico-quimicos do conjunto de solos
avaliado e o comportamento espectral de todos os 24 perfis pedologicos coletados, bem como

sera discutido o agrupamento dos solos nas faixas espectrais vis-NIR-SWIR ¢ MIR.

3.3.1 Caracterizacdo dos solos

As classes dos solos estudadas, classificadas até o 4° nivel categorico (subgrupo),
bem como os locais de coleta das amostras, estdo disponiveis no Apéndice A. Os 24 perfis de
solos analisados corresponderam as seguintes classes, com suas respectivas taxas de
ocorréncia: Neossolos (R) e Argissolos (P), destacando-se com 25% das ocorréncias cada um,
Planossolos (S) com 16,6% de ocorréncia, Cambissolos (C) e Luvissolos (T) representando
8,3% cada, e Gleissolos (G), Latossolos (L), Plintossolos (F) e Vertissolos (V)
corresponderam a 4,2% cada (Figura 6a). Quanto a subordem (Figura 6b), sobressairam-se os

Neossolos Flavicos e Planossolos Natricos.
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Figura 6 — Analise da a) distribui¢ao de frequéncia das ordens e b) subordens de solo

a b

Frequéncia absoluta

c F G P R S T v CX FT GZ LA PA PAC PV PVA RL RQ RY SN SX TC TX VE

L
Classes de solo Classes de solo - Subordem

CX: Cambissolo Haplico; FT: Plintossolo Argilivico; GZ: Gleissolo Salico; LA: Latossolo Amarelo;
PA: Argissolo Amarelo; PAC: Argissolo Acinzentado; PV: Argissolo Vermelho; PVA: Argissolo
Vermelho-Amarelo; RL: Neossolo Litolico; RQ: Neossolo Quartzarénico; RY: Neosslo Flavico; SN:
Planossolo Natrico; SX: Planossolo Haplico; TC: Luvissolo Cromico; TX: Luvissolo Héplico; VE:
Vertissolo Ebanico.

Fonte: A autora.

No contexto estadual, Neossolos e Argissolos sdo as duas principais classes de
solos do Ceara (Levantamento de reconhecimento de média intensidade dos solos do Estado
do Ceara, 2024). Ja para a regiao Nordeste, as classes dominantes em ordem decrescente de
ocorréncia sao os Latossolos, Neossolos, Argissolos, Planossolos, Luvissolos, Plintossolos,
Cambissolos e Gleissolos (Souza; Leite; Medeiros, 2021). Tais dados destacam a diversidade
edafica da regido, marcada por solos em diferentes estagios de desenvolvimento, e refor¢cam a
relevancia desse estudo ao contribuir para a caracterizacao espectral dos principais solos.

A analise estatistica da granulometria dos solos (Apéndice B), considerando os
valores médios, evidenciou que o Neossolo apresentou textura arenosa, enquanto as demais
classes se enquadraram no grupamento textural média (Santos et al., 2025). Para os
macronutrientes, com base nos valores maximos, as concentragdes mais elevadas para Ca e
Mg (> 9 cmol, kg-') ocorreram no Gleissolo, Luvissolo € Planossolo, € os teores mais altos de
N (> 3 g kg-") aconteceram no Argissolo, Cambissolo e Luvissolo.

Quanto ao CO, as maiores concentragdes (> 10 g kg-') foram observadas nos

Argissolo, Cambissolo, Luvissolo e Plintossolo. No semiarido, os maiores teores de COT
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(12,3 g kg-') sdo geralmente reportados em Cambissolos e Vertissolos (Souza; Leite;
Medeiros, 2021). Contudo, o presente estudo avaliou apenas um perfil de Vertissolo, o qual
apresentou baixo CO, contrastando a tendéncia regional.

O pH dos solos variou de fortemente 4cido, com valor minimo de 3,9 no
Cambissolo, a moderadamente alcalino, atingindo 8,2 no Vertissolo. Em solos alcalinos, a
elevada saturagdo por cations bdsicos e/ou o actimulo de sais ¢ comumente observada,
sobretudo em ambientes de varzeas com ocorréncia de solos salinos (Araujo Filho et al.,
2022). Essa condicao foi verificada no Vertissolo estudado, que apresentou, além de
alcalinidade, alta concentragdo do cation sodio ¢ elevada condutividade elétrica.

No que se refere as caracteristicas de salinidade e sodicidade do solo, foram
avaliados os valores de condutividade elétrica (CE) e porcentagem de saturagdo por soédio
(PST), empregados para identificar os solos afetados por sais e classifica-los em trés
categorias: salinos - CE > 4 dS m™ e PST < 15%:; sodicos - CE <4 dS m” e PST > 15%; e
salino-sodicos - CE > 4 dS m™ e PST > 15% (FAO, 2024). Com base nos valores maximos
observados, o Gleissolo, Neossolo e Vertissolo foram enquadrados como salino-sddicos e os
Planossolos foram classificados como sddicos.

Os resultados obtidos evidenciam que a sodicidade representa um grave problema
para os solos do Nordeste brasileiro. O excesso de sodio trocavel no solo ocasiona baixa
estabilidade estrutural, permeabilidade reduzida e fraca aeracdo, além de favorecer a formagao
de crostas superficiais, fatores que limitam o crescimento radicular ¢ o desenvolvimento das
culturas (Hailu; Mehari, 2021). O acimulo de sais nos solos dessa regido compromete a

sustentabilidade da produgao agricola local.

3.3.2 Correlagdo entre atributos do solo e faixas espectrais

A correlagdo de Spearman (p) foi utilizada devido a ndo normalidade dos dados.
Esta analise mede a intensidade e a direcao da relagdo entre duas varidveis, e é representada
por um coeficiente que varia de -1 a +1. Coeficientes positivos (p > 0) indicam relacdo direta,
enquanto valores negativos (p < 0) refletem relagdo inversa. A interpretagao da magnitude das
relagdes ¢ feita em classes, conforme Mukaka (2012): coeficientes entre 0 € 0,3 (0 a -0,3) sdo
considerados despreziveis; entre 0,30 a 0,5 (-0,30 a -0,5), sdo baixos; entre 0,50 ¢ 0,7 (-0,50 a
-0,7), moderados; entre 0,70 ¢ 0,9 (-0,7 a 0,9), altos; e > 0,9 (maior que -0,9), muito altos.

A andlise de correlagdo de Spearman entre os atributos do solo e os dados

espectrais vis-NIR-SWIR suavizados com o filtro SG evidenciou a predominancia de relagdes
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inversas, com exce¢do da areia, e amplitudes variando de despreziveis a fracas (Figura 7).

Figura 7 — Correlagdo multivariada entre atributos do solo e a faixa espectral vis-NIR-SWIR
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Fonte: A autora.

Entre os atributos fisicos, a areia foi a unica variavel positivamente correlacionada
com a reflectancia, com destaque para as faixas 1898-1923 nm e 2220-2495 nm (p de 0,40 a
0,45), que apresentaram as correlagcdes mais fortes, promovendo o aumento da reflectancia.
Em contrapartida, a argila e o silte exibiram correlacdes negativas ao longo do espectro. O
silte exibiu os maiores coeficientes nas faixas 355-379 nm e 775-929 nm (p entre -0,40 e -
0,43), enquanto a argila destacou-se na regido de 2142-2495 nm (p entre -0,51 e -0,65).

A correlagdo positiva entre a areia e o espectro vis-NIR-SWIR decorre da composi¢ao
desta fracao do solo, constituida predominantemente por quartzo, um mineral transparente que
ndo absorve energia e contribui para o aumento da intensidade de reflectincia global (albedo)
(Terra et al., 2021). Por outro lado, a correlagdo inversa entre a argila € o comportamento
espectral evidencia que maiores concentracdes desta fragao reduzem a reflectancia do solo,
favorecendo a ocorréncia de feicdes de absorcao. Este efeito esta relacionado a mineralogia da
argila, composta principalmente por minerais que apresentam absor¢cdo na regido SWIR,

como a caulinita, por exemplo (Madeira Netto; Baptista, 2000).
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Com relagdo aos atributos quimicos, o sodio (Na) destacou-se nas faixas de 1398-
1404 nm, 1419-1441 nm e 1880-2003 nm (p de -0,51 a -0,56), ja a PST se destacou em 1346-
1433 nm, 1547-1563 nm e 1643-1891 nm (p de -0,35 a -0,38). O pH apresentou associagcdo
mais forte na regido de 905-1284 nm (p de -0,35 a -0,40), enquanto a CE exibiu os maiores
coeficientes em 640-834 nm (p de -0,50 a -0,51). O carbono organico (C) apresentou as
correlagcdes mais expressivas na faixa 524-664 nm (p de -0,40 e -0,43). A presenca de matéria
organica no solo ¢ reconhecida como um importante atributo para caracteriza¢do espectral,
apresentando maior correlagdo com a reflectdncia do visivel (Meneses; Almeida; Baptista,
2019), o que reforca os resultados obtidos.

Quanto aos macronutrientes, o nitrogénio (N) e potassio (K) apresentaram
correlagdes de baixa magnitude. O N exibiu tanto relagcdes positivas quanto negativas,
contudo foram consideradas insignificantes tendo o maior valor ocorrido em 531-556 nm (p =
-0,29), enquanto o K mostrou fraca associagdo, apresentando o maior valor em 433-447 nm (p
=-0,31). O calcio (Ca) exibiu correlagdes moderadas nas faixas 355-591 nm e 677-1125 nm
(p de -0,51 a -0,64), e 0 magnésio (Mg) obteve maior correlagdo em 355-466 nm, 669-1150
nm e 1897-1927 nm (p de -0,40 a -0,48).

Os atributos quimicos, com excecdo do carbono organico, ndo alteram
diretamente o espectro do solo, sendo considerados propriedades de segunda ordem. No
entanto, tais atributos encontram-se adsorvidos ou dependem de grupos funcionais de
compostos minerais e organicos (Terra ef al., 2021), o que possibilita a sua analise indireta por
meio da interagdo com os atributos de primeira ordem.

Na analise de correlagdo de Spearman entre os dados espectrais MIR suavizados e
os atributos do solo, observaram-se, de forma geral, relacdes tanto diretas quanto inversas,

com magnitudes mais expressivas do que as relacdes verificadas na faixa vis-NIR-SWIR

(Figura 8).
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Figura 8 — Correlagao multivariada entre atributos do solo e a faixa espectral MIR
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Fonte: A autora.

Os atributos fisicos apresentaram altas correlagdes. A areia exibiu associagdes
positivas fortes nas faixas 3583-3198 cm™, 1269-1060 cm™ e 806-751 cm™ (p = 0,71 a 0,92),
enquanto as correlagdes negativas mais intensas ocorreram em 1802-1770 cm™ e 1597-1332
cm™ (p=-0,71 a -0,77). O silte destacou-se em 2035-1777 cm™ e 1530-1315 cm™ (p=0,71 a
0,77), além da regido 1250-1133 cm™ (p = -0,71 a -0,77). A argila, por sua vez, exibiu os
coeficientes mais elevados nas regides 3990-3883 cm'l, 3675-3669 cm'l, 3637-3628 cm'l,
3621-3404 cm™, 3391-3373 em™, 3273-3063 cm™, 1256-1058 cm™, 993-890 cm™ e 808-743
cm™ (p=-0,71 a -0,85), além das faixas 1794-1768 cm™ e 1600-1334 cm™ (p = 0,51 a 0,57).

Diferentemente do observado na faixa vis-NIR-SWIR, a fracdo areia apresentou
correlagdes negativas na regido MIR. Essa relagdo inversa promove absor¢des e estd
associada a presenga de silica, a qual possui bandas de absor¢@o apenas no MIR. Nos solos, a
silica estd presente no quartzo que compde a areia e nos argilominerais filossilicatos que
constituem a fracao argila, promovendo absor¢des nessas particulas (Terra et al., 2021).

Em relagdo aos atributos quimicos, o carbono apresentou correlagdes negativas
mais intensas em 2946-2838 cm™ ¢ 1837-1818 cm™ (p = -0,35 a -0,41), e positivas em 1313-

1285 cm™ (p = 0,40 a 0,48). O sodio exibiu os maiores valores nas faixas 3600-3173 cm™,
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1272-1075 cm™ e 805-762 cm™ (p = -0,51 a -0,66), além da regido 1599-1323 cm™ (p = 0,51
a 0,59). O pH destacou-se em 820-810 cm™ (p = 0,40 a 0,47) e em 1263-1230 cm™ (p = -0,31
a -0,33). A PST exibiu as maiores correlacdes nas faixas 3615-3561 cm'l, 1284-1252 cm™ e
780-773 cm’™ (p = -0,35 a -0,39) e em 1563-1554 cm™ (p = 0,35). Ja a CE, apresentou
correlacdo mais elevada em 1397-1300 cm™ (p = 0,31 a 0,37).

Quanto aos macronutrientes, o0 N obteve maior correlagdo em 1302-1280 cm’ (p
= 0,35 a 0,40). O K apresentou correlagdes positivas em 2048-1779 cm™, 1487-1483 cm™ ¢
1388-1313 cm™ (p = 0,51 a 0,57), enquanto em 1243-1213 cm™ foram observados maior
correlacao negativa (p = -0,50 e -0,51). O Ca apresentou relagdes mais intensas em 3417-3153
cm™ e 1252-1136 cm™ (p = -0,51 a -0,56), além de 1401-1289 cm™ (p = 0,51 a 0,64). O Mg
exibiu os maiores coeficientes nas faixas 3509-3503 cm™, 3486-3171 cm™, 1265-1127 cm™ e
786-769 cm™ (p =-0,51 a -0,63), além de 1889-1867 cm™ e 1500-1304 cm™ (p = 0,51 a 0,66).

De modo geral, os coeficientes de correlagdo produzidos na faixa MIR foram
superiores aos obtidos na regido vis-NIR-SWIR. A exceg¢ao foi os coeficientes da CE e do Ca.
As correlacdes fortes entre os atributos e a energia eletromagnética do MIR, decorrem das
vibragdes moleculares fundamentais desta regido, as quais refletem os componentes minerais
e organicos dos solos (Dangal et al., 2019). Este tipo de interagdo da energia do MIR permite
a melhor caracterizacdo dos atributos, sobretudo daqueles que alteram o espectro do solo,

como a granulometria e o carbono organico.

3.3.3 Comportamento espectral das classes de solos
3.3.3.1 Argissolo

Todos os seis perfis de Argissolo avaliados apresentaram alta intensidade de
reflectancia na faixa vis-NIR-SWIR, com valores superiores a 0,70, o que evidencia a forte
contribuicdo da fracdo areia no albedo. A morfologia espectral foi semelhante entre os perfis,
tendo a curva espectral exibido inicialmente forma ascendente, seguida de um trecho plano e,
a partir de 2000 nm, leve tendéncia descendente. Observaram-se diferencas na intensidade de
reflectdncia entre os horizontes superficiais e subsuperficiais, atribuidas principalmente a
influéncia da matéria organica e as variagdes granulométricas entre os horizontes.

A reducao do teor de areia e o aumento de argila entre os horizontes superficial e
subsuperficial ¢ uma caracteristica tipica de Argissolos (Santos et al., 2025). Essa

diferenciagdo textural entre horizontes resulta da atuacdo de diferentes processos



51

pedogenéticos, como a argiluviacdo (lessivagem) e a elutriagdo. Na argiluviagdo, ocorre a
movimentagdo das particulas finas da fracdo argila, com a eluviagdo dos horizontes
superficiais € o consequente enriquecimento dos horizontes subsuperficiais pela iluviacao da
argila. J4 na elutriagdo, o material fino ¢ removido do horizonte superficial em fun¢do do
escoamento superficial, promovendo um gradiente textural no solo (Kampf; Curi, 2012).

A diferenga textural entre os horizontes de Argissolos foi adequadamente captada
pela espectroscopia de reflectancia, uma vez que os horizontes B texturais apresentaram
feicOes espectrais tipicas de minerais de argila com absor¢cdes bem pronunciadas. Em
contraste, o horizonte superficial exibiu maior reflectincia na regido do SWIR e picos
acentuados na faixa do MIR, em decorréncia do seu alto teor de areia.

O maior contetido de matéria organica nos horizontes superficiais A promoveu, na
faixa vis-NIR-SWIR, menor intensidade de reflectancia, além do mascaramento das fei¢coes
associadas aos o0xidos de ferro. Estes 6xidos ocorrem em menor quantidade nesses horizontes
em virtude da migracdo de particulas finas a partir do horizonte superficial, processo
associado a lessivagem (Kdmpf; Curi, 2012). Por outro lado, o maior teor de areia, em relagao
aos horizontes subsuperficiais, favoreceu o aumento da reflectancia a partir de 2100 nm,
promovendo inversdo das curvas. Nos horizontes B texturais, observaram-se absorcoes tipicas
dos oxidos de ferro em torno de 435-530 nm e 885-950 nm, sendo esta ultima feigdo
caracterizada pelo aspecto concavo na curva espectral (Madeira Netto; Baptista, 2000).

Na regido do MIR, os perfis ndo apresentaram grandes distingdes na intensidade
geral de reflectancia, mas, semelhante ao vis-NIR-SWIR, foi verificada diferengas entre os
horizontes. As fei¢des de absorcdo associadas ao CO, centradas em 2924-2843 cm™ (Mendes
et al., 2022), foram mais evidentes nos horizontes superficiais, que tém maior conteudo de
matéria organica. De modo geral, nos horizontes B texturais ocorreu redu¢do da energia
refletida nas regides de 3695-2750 cm™ ¢ 1250-1000 cm’, atribuida ao maior contetdo de
argila desses horizontes.

A andlise do comportamento espectral do perfil 5 (Figura 9) revelou
predominancia de goethita, caracterizado por maior intensidade de reflectancia no inicio do
espectro vis. A hematita e a goethita sdo os 6xidos de ferro mais encontrados nos solos
tropicais (Meneses; Almeida; Baptista, 2019). Observaram-se absor¢des em 1400 ¢ 1900 nm
com a presenga de um ombro a esquerda das fei¢des, indicando ocorréncia da caulinita,
enquanto as absorgdes em 2346 ¢ 2440 nm foram atribuidas as micas (Dematté et al., 2014;
Meneses; Almeida; Baptista, 2019).

Na faixa MIR, a reflectancia exibiu padrdo abrupto de queda no inicio do
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espectro, especialmente nos horizontes superficiais que possuem elevado teor de areia e
presenca de quartzo na composi¢do, o qual possui forte absor¢do nesta regido do espectro.
Nestes horizontes foram observadas, também, fei¢cdes associadas ao CO, tendo ocorrido altos
picos de reflectancia a partir de 1250 cm™, os quais sdo atribuidos ao quartzo (Mendes et al.,

2022).

Figura 9 — Comportamento espectral de perfil 5: ARGISSOLO ACINZENTADO Eutréfico
tipico
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Nos perfis 6 ¢ 9, a analise do comportamento espectral também evidenciou a
predominancia de goethita, em concordancia com a cor amarelada desses solos. As feigdes
atribuidas a caulinita em 1400 e 2200 nm foram bem definidas, enquanto as absor¢des
associadas as micas foram observadas no final do espectro vis-NIR-SWIR. No MIR, a por¢ao
inicial do espectro revelou um padrao abrupto de reflectancia nos horizontes superficiais pelo
alto teor de quartzo.

O perfil 6 (Figura 10) apresentou variagdes entre os espectros dos horizontes, com

o horizonte An exibindo a menor reflectincia de 3250-2100 cm™ e uma forte absorcdo em
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2250 cm™, sendo esta feicdo de absor¢do associada a silica presente no quartzo ou nos

filossilicatos (Mendes et al., 2022).

Figura 10 — Comportamento espectral de perfil 6: ARGISSOLO AMARELO Distroéfico tipico
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No perfil 9 (Figura 11), as absor¢des dos filossilicatos entre 3700-3600 cm™ foram

mais evidentes, sugerindo maior ocorréncia de caulinita (Di Raimo ef al., 2022).
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Figura 11 — Comportamento espectral de perfil 9: ARGISSOLO AMARELO Distrocoeso
solodico
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A andlise do comportamento espectral dos perfis 12, 18 e 19 evidenciou a
predominancia do 6xido de Fe hematita, indicada pela menor intensidade de reflectancia no
inicio do espectro visivel. Foram observadas absor¢des associadas a caulinita e as micas na
regido SWIR. As feigdes atribuidas aos 6xidos e aos argilomonerais 1:1 foram mais
pronunciadas nos horizontes subsuperficiais, evidenciando a importancia de se realizar analise
espectral em horizontes diagndsticos, os quais exibem caracteristicas fundamentais para a
classificacdo do solo. As feicoes dos minerais observados confirmam as caracteristicas dos
Argissolos, solos considerados em estagio intermediario de evolugdo (Santos ef al., 2025).

Embora os perfis 12 e 18 possuam a mesma classificagdo pedolédgica, seus
horizontes apresentaram distingdes no comportamento espectral da faixa MIR, possivelmente
relacionadas a diferengas no material de origem, uma vez que os solos se formaram em areas
distintas. O perfil 12 (Figura 12) apresentou diferencas de intensidade entre os horizontes, as
fei¢des de absorcdo dos filossilicatos foram mais nitidas, e ocorreram pequenos picos em

1780-1500 cm™', indicando maior predominancia de caulinita.
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Figura 12 — Comportamento espectral de perfil 12: ARGISSOLO VERMELHO-AMARELO
Distrofico arénico
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Em contraste, no perfil 18 (Figura 13) as absor¢des do quartzo em 2000-1750 cm’™

. -1 . .
foram suaves e os picos em 1250-1000 cm™ foram menos intensos, sugerindo menor teor de

quartzo que no perfil 12.
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Figura 13 — Comportamento espectral de perfil 18: ARGISSOLO VERMELHO-AMARELO
Distrofico arénico
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O perfil 19 (Figura 14), por sua vez, apresentou o maior fator de reflectancia entre

todos os perfis de Argissolos avaliados. Na faixa MIR, as fei¢des de absorcdo atribuidas ao

CO em 2924-2843 cm™' foram muito suaves. Por outro lado, observou-se a ocorréncia de um

pico em 916 cm™, associada a hematita oriunda da desidroxilacdo da goethita (Ruan et al.,

2002).
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Figura 14 — Comportamento espectral de perfil 19: ARGISSOLO VERMELHO Distrofico
nitossolico
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3.3.3.2 Cambissolo

Os dois perfis de Cambissolo avaliados apresentaram elevado albedo na faixa vis-
NIR-SWIR, com fator de reflectancia superior a 0,75, o que evidencia a forte contribuicao da
granulometria para o aumento da reflectincia. A morfologia espectral seguiu padrio
semelhante entre os perfis, caracterizado por curvas inicialmente ascendentes, seguidas por
trecho com tendéncia plana.

Foram observadas diferencas na intensidade de reflectancia entre os horizontes,
atribuidas principalmente & influéncia da matéria organica e a granulometria. As feicdes dos
oxidos de ferro presentes na faixa vis-NIR indicaram predominancia de hematita, com banda
de absorcdo mais estreita em torno de 950 nm. Estas feicoes foram observadas apenas nos
horizontes subsuperficiais, os quais ndo sofrem mascaramento pela matéria organica, o que
ratifica a importancia destes horizontes para auxiliar na classificagdo dos solos.

No MIR, também foram verificadas diferencas na intensidade de reflectancia entre

os horizontes em algumas regides. Embora os horizontes superficiais tenham apresentado
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teores elevados de CO (> 10 g kg™), suas fei¢des de absor¢io centradas entre 2924-2843 cm’™
(Mendes et al., 2022), foram suaves. Ja os picos de quartzo, entre 1200-1000 cm™, exibiram
baixa intensidade e auséncia de diferengas expressiva entre horizontes. Estes aspectos
sugerem menor teor de quartzo e poucas variagdes texturais, o que ¢ tipico de Cambissolos,
que sdo caracterizados pelo baixo desenvolvimento pedogenético (Santos et al., 2025).

O comportamento espectral do perfil 11 (Figura 15) apresentou fei¢des de
absorcao tipicas de caulinita e micas na faixa NIR-SWIR, com inversdo da curva em 2350
nm, decorrente do aumento da reflectancia no horizonte Al, em virtude do maior teor da
fragdo areia em relacdo aos demais horizontes. Embora os Cambissolos apresentem,
normalmente, teores uniformes de argila ou pequenos incrementos (Santos et al., 2025), esta
leve diferenca de textura pdde ser capturada pela analise espectral, que evidenciou variagdes
na reflectancia entre os horizontes.

Na faixa MIR, observaram-se fei¢des atribuidas a caulinita, com absor¢des entre
3700-3600 cm™, além de pequenas variagdes na intensidade de reflectdncia entre os

1

horizontes na regido de 3000-2000 cm . Essas diferengas podem estar associadas a

incrementos sutis no teor de argila dos horizontes (Di Raimo et al., 2022).

Figura 15 — Comportamento espectral de perfil 11: CAMBISSOLO HAPLICO Tb Eutréfico
tipico
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Em contraste, o perfil 20 (Figura 16) ndo apresentou inversdo da curva. Todavia,
as feicdes bem marcadas em 1400 e 2200 nm indicaram a prevaléncia de caulinita, o que foi
corroborado no MIR pelas absor¢des dos filossilicatos no inicio do espectro e pelo pico em
1500 cm™, enquanto as feigdes em 1900 e 2346 nm sugeriram a ocorréncia de argilominerais
2:1. Os horizontes subsuperficiais exibiram elevada reflectdncia, comportamento
caracteristico dos Cambissolos, cujo maior teor de silte, sobretudo nos horizontes
subsuperficiais, associado ao baixo desenvolvimento pedogenético e a presenca de
argilominerais 2:1, favorece a alta reflectancia (Bellinaso; Dematté; Romeiro, 2010).

A curva do horizonte Bil destacou-se pela reflectdncia superior em todas as
faixas, atribuido ao seu maior teor de areia. Observaram-se diferengas no seu comportamento
entre 2750 ¢ 1400 cm'l, em relacdo aos demais horizontes, associadas a variacOes na
granulometria ¢ no teor de CO. Este horizonte representa a zona de maior transformagao
pedogenética do perfil, enquanto o horizonte subsequente, por ser mais profundo, pode conter
minerais primarios com assinaturas espectrais distintas.

O horizonte Bil apresentou maior teor de areia e reducdo na concentragdo de CO,
em comparagao ao horizonte A, o que favoreceu a sua alta reflectdncia. O predominio da
fracdo areia tende a reduzir a superficie especifica das particulas, permitindo que o CO,
mesmo com baixos teores, exerca maior influéncia sobre o espectro (Di Raimo et al., 2022).
Assim, as absor¢des nessa regido correspondem a combinagdo das bandas de CO e de H,O
com as dos minerais, sendo as feicdes presentes entre 1725 e 1530 cm™ atribuidas aos acidos

carboxilicos e proteinas da matéria organica (Rossel et al., 2008).
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Figura 16 — Comportamento espectral de perfil 20: CAMBISSOLO HAPLICO Tb Distrofico
saprolitico
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3.3.3.3 Gleissolo

O perfil de Gleissolo analisado apresentou alta reflectancia, com intensidade
maxima de 0,72 (Figura 17). A morfologia espectral foi caracterizada por comportamento
inicialmente ascendente, seguindo de um trecho mais plano a partir de 1450 nm. Foram
observadas diferencas na intensidade de reflectdncia entre os horizontes superficiais e
subsuperficiais. De forma similar ao verificado no Cambissolo, os horizontes subsuperficiais
deste perfil apresentaram alta reflectdncia em razdo do elevado conteudo de silte, que ¢
caracteristico de solos com baixo desenvolvimento, associado ao maior teor de areia.

Na faixa vis-NIR-SWIR, os horizontes subsuperficiais exibiram curva com
concavidade suave entre 900 ¢ 950 nm, indicando ocorréncia de 6xidos de ferro em pequena
quantidade. Embora o ferro seja um elemento caracteristico dos Gleissolos, nestes solos ele
ocorre principalmente na forma reduzida, a qual ndo possui feigdes tipicas. O predominio do
ferro reduzido decorre da preponderancia do processo de gleizagdo, que ocorre pela saturagao
do solo com agua, que estabelece condi¢des anaerdbias e promove a reducao do Fe, originado

uma matriz de cor cinzenta, com ocorréncia ocasional de mosqueados ou concregdes de Fe e
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Mn (Kampf; Curi, 2012).

Ainda na faixa vis-NIR-SWIR, observaram-se fei¢des relacionadas aos
argilominerais, indicando predominancia de minerais do tipo 2:1, evidenciada pelas absor¢oes
mais suaves em 1400 e 2200 nm e pela feigdo em 1900 nm, profunda e com aspecto em “V”.
Além disso, verificaram-se feigdes entre 2261-2440 nm associadas as micas ¢ aos carbonatos
(Meneses; Almeida; Baptista, 2019), corroboradas pelos maiores teores de Ca e Mg no perfil.
Em contraste com os carbonatos, as caracteristicas de salinidade e sodicidade deste perfil nao
puderam ser identificadas, uma vez que os sais soliveis ndo alteram o espectro.

A presenga de carbonatos ¢ tipica de ambientes com baixo intemperismo quimico,
como os solos do semiarido, que preservam caracteristicas do material de origem e
frequentemente se formam a partir de rochas sedimentares (Aratjo Filho et al., 2022). No
contexto do Ceard, a ocorréncia destes minerais nos Gleissolos ¢ particularmente favorecida
pelo material de origem, depdsitos aluvionares e litoraneos (Levantamento de reconhecimento
de média intensidade dos solos do Estado do Ceard, 2024). E importante destacar que a
dindmica do ambiente de formacdo desse solo, o qual ¢ formado principalmente por
sedimentos sob condi¢des de hidromorfia (Santos et al., 2025), associado a influéncia de agua
salgada, cria condigdes propicias para génese de solos salino-sddicos.

De modo oposto, na faixa do MIR nao foram observadas fei¢des associadas a
carbonatos. O comportamento espectral apresentou variagdes sutis na intensidade de
reflectdncia entre os horizontes, principalmente na regido de 3000-2250 cm™, atribuidas a
diferengcas na granulometria. Os maiores teores de areia nos horizontes subsuperficiais
promoveram maior reflectincia nesta regido e também entre 1200-1000 cm™, em fungdo da
maior presenga de quartzo. Foram verificadas ainda feigdes de absorcdo suaves dos
filossilicatos em 3695-3622 cm™ e do CO em 2924 cm™, além de uma absor¢io com aspecto
mais largo e profundo em torno de 1624 cm™, atribuida a combinacio das bandas de CO e de

H,O0, resultante da influéncia conjunta da matéria organica e da agua.
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Figura 17 — Comportamento espectral de perfil 8: GLEISSOLO SALICO Sédico tipico
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3.3.3.4 Latossolo

O perfil de Latossolo apresentou alta reflectdncia, com intensidade maxima de
0,77 na regido vis-NIR-SWIR (Figura 18). A morfologia espectral exibiu aspecto inicialmente
ascendente, seguido de um trecho plano e, a partir de 2100 nm, tendéncia levemente
descendente. O comportamento espectral foi semelhante entre os horizontes na faixa vis-NIR-
SWIR, refletindo a granulometria mais uniforme, enquanto no MIR ocorreram diferencas. Na
regido SWIR ocorreu inversdo das curvas, com o horizonte A apresentando maior reflectancia.
Embora os Latossolos exibam pouca diferenciacdo de sub-horizontes, pode ocorrer pequeno
incremento de argila no horizonte B latossolico com a profundidade (Santos et al., 2025).

Na faixa vis-NIR-SWIR, observaram-se fei¢des tipicas de 6xidos e argilominerais
do tipo 1:1. Na curva espectral, a concavidade mais larga entre 900-1000 nm sugere a
predominancia de goethita, o que esta em concordancia com a coloracao do perfil, enquanto a
absor¢ao em 2265 nm esta associada a ocorréncia de gibbsita (Meneses; Almeida; Baptista,
2019). Também foram verificadas absorc¢des atribuidas a caulinita, evidenciadas pelo ombro a

esquerda nas feicdes em 1400 e 2200 nm. A ocorréncia concomitante de oxidos e
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argilominerais 1:1 neste perfil, evidencia o avancado desenvolvimento pedogenético dos
Latossolos.

Os Latossolos se caracterizam pelo alto grau de intemperismo, concentrando
argilominerais mais resistentes e 6xidos de Fe e Al, de modo que o predominio de minerais
secundarios favorece o acumulo de caulinita e gibbsita (Santos et al., 2025). Neste solo,
predomina o processo pedogenético de ferralitizacdo, que resulta na remogdo da silica
(dessilicacao), na formagao de caulinita e na concentragdo de 6xidos de Fe e Al, evidenciando
a forte atuagdo do intemperismo quimico (Kadmpf; Curi, 2012). Estas caracteristicas do
processo pedogenético puderam ser verificadas na analise espectral, manifestando-se de forma
mais intensa nos horizontes subsuperficiais, os quais sdo diagndsticos para identificar esta
classe do solo.

Na regido do MIR, as fei¢des de absor¢do do CO em 2924 cm™ foram pouco
expressivas, possivelmente mascaradas pelo maior conteudo de 6xidos. Foram observadas
absor¢des entre 3695-3390 cm™, caracteristicas de filossilicatos e gibbsita, além de fei¢des
acentuadas de quartzo, com absorgdo em 2230 cm™ e picos de reflectincia entre 1200-1000
cm” (Mendes et al., 2022), corroborando o elevado contetido de areia do perfil. Por outro
lado, os horizontes subsuperficiais apresentaram pequeno actimulo de argila, destacando-se o
horizonte Bwl, que exibiu alta reflectancia e comportamento distinto dos demais horizontes
na faixa de 2500-1250 cm™.

O horizonte Bw1 ¢ a zona de maior atuagdo pedogenética. As variagdes espectrais
observadas neste horizonte podem ser atribuidas a mudangas na granulometria € no contetido
de CO, visto que, em relagao ao horizonte antecedente, houve reducao dos teores de areia e de
CO e incremento de argila. A variacdo destes atributos tornou mais pronunciada as feicdes dos
minerais entre 2000-1500 cm™, sendo que na regido entre 1725-1530 cm™ ocorrem
importantes absor¢des de CO (Rossel et al., 2008). Assim, de modo similar ao perfil 20 de
Cambissolo, as fei¢des verificadas nessa regido, possivelmente, sao a combinacdo das bandas
de CO e de H,O junto aos minerais oriundos do acimulo de argila, prevalecendo neste caso os

minerais secundarios.
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Figura 18 — Comportamento espectral de perfil 14: LATOSSOLO AMARELO Distrofico
psamitico
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3.3.3.5 Luvissolo

Os dois perfis de Luvissolo avaliados apresentaram elevado albedo, com fator de
reflectancia > 0,69. O comportamento e a morfologia espectral exibiram padrdo semelhante
entre os perfis, caracterizado por curva com forma inicialmente ascendente, seguida de um
trecho plano e, a partir de 2000 nm, ocorreu leve tendéncia descendente. Foram observadas
diferencas na intensidade de reflectancia entre os horizontes, atribuidas a influéncia da
matéria organica e as variagdes granulométricas.

De modo semelhante aos Argissolos, a diferenciacdo textural dos Luvissolos
resulta do processo pedogenético de elutriacdo, no qual ocorre a remogao superficial da argila
por erosdo, ¢ do processo de argiluviagdo, que promove a migracao da argila dos horizontes
superficiais € o consequente acumulo nos subsuperficiais, (Kdmpf; Curi, 2012). Todavia,
embora esta classe apresente contraste textural com incremento de argila em profundidade, ha
expressiva presenga de argilominerais do tipo 2:1 (Santos ef al., 2025), o que a diferencia dos

Argissolos e evidencia o estddio intermediario de desenvolvimento. A analise espectral
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identificou tais aspectos texturais e mineraldgicos, sobretudo nos horizontes subsuperficiais,
que sdo diagnosticos para classificagdao do solo.

Na faixa vis-NIR-SWIR, o comportamento espectral dos perfis exibiu fei¢coes
associadas aos o0xidos de ferro, indicando predominio de hematita, devido a baixa intensidade
de reflectdncia no inicio do espectro. Observaram-se ainda no SWIR, absor¢des mais
pronunciadas e profundas em 1900 nm, indicativas do predominio de argilomimerais 2:1.
Entre 2261-2440 nm, foram identificadas absor¢des atribuidas aos carbonatos e as micas
(Meneses; Almeida; Baptista, 2019), coincidindo com o menor desenvolvimento desse solo.

Nos Luvissolos, ¢ comum a alta saturagdo por bases e a presenca de minerais
menos intemperizados (Santos et al., 2025). Estes aspectos, associado a geologia e o baixo
intemperismo quimico da regido, favorecem a permanéncia nos solos de minerais primarios
como as micas, a formagdao dos minerais secundarios argilominerais 2:1 e a ocorréncia de
carbonatos, que foi corroborado pela maior concentracao de Ca e Mg nos perfis.

Na regido do SWIR, também foi verificada a inversdo das curvas devido a
diferenca textural, ocorrendo em trechos distintos dos perfis, o que sugere diferengas na
composi¢ao mineraldgica especifica. No perfil 4 (Figura 19), a inversao ocorreu em 2350 nm,

enquanto no perfil 21 ocorreu em 1800 nm.

Figura 19 — Comportamento espectral de perfil 4: LUVISSOLO HAPLICO Pilico abruptico
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Na faixa MIR, os horizontes superficiais exibiram a maior intensidade de
reflectancia, atribuido ao maior teor de areia desses horizontes. Observaram-se fei¢des de
absorcdo de filossilicatos no inicio do espectro e picos de quartzo entre 1250-1000 cm™, os
quais foram menos intensos em virtude do menor teor de quartzo nos perfis, que apresentaram
textura média. As feicdes em 2920 e 2880 cm ' foram mais visiveis no perfil 21 (Figura 20),
devido ao seu maior conteudo de CO, ocorrendo ainda absor¢des entre 1750-1600 cm’,
associadas a diferentes formas de CO na matéria organica. Proximo a esta regido, em 1800

cm™, a feicdo de absorcdo ¢ atribuida aos carbonatos (Wijewardane ef al., 2018).

Figura 20 — Comportamento espectral de perfil 21: LUVISSOLO CROMICO Ortico
abruptico
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3.3.3.6 Neossolo

Os seis perfis de Neossolos avaliados apresentaram alta reflectancia, com
intensidade variando entre 0,64 e 0,90 na faixa vis-NIR-SWIR. Este comportamento esta
associado ao elevado teor da fracdo areia e a significativa contribui¢do do mineral quartzo. A
morfologia espectral foi semelhante entre os perfis, exibindo aspecto ascendente até

aproximadamente 1300 nm, seguido por trecho de tendéncia plana.
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Apesar dos perfis terem exibido curvas espectrais com caracteristicas
semelhantes, observaram-se diferencas na intensidade de reflectancia entre os horizontes,
atribuidas principalmente ao efeito da matéria organica e as variagdes granulométricas. Em
algumas subordens de Neossolos, como nos Fluvicos e Quartzarénicos, ocorre adigdo de
particulas minerais na superficie do solo pela agdo edlica, hidrolédgica e coluvial, resultado do
processo pedogenético de agradacdo — acimulo de sedimentos (Kédmpf; Curi, 2012).

Os trés perfis de Neossolos Fluvicos avaliados exibiram variacdes na intensidade
de reflectancia, sem, contudo, apresentarem um padrdo definido entre os horizontes em
qualquer das faixas espectrais. Tal comportamento deve-se a estratificacdo das camadas com
influéncia de diferentes materiais, caracteristica tipica desta subordem. Estes solos sdo
derivados de sedimentos aluviais com carater flivico at¢ 150 cm de profundidade, o que
resulta em camadas estratificadas e distribui¢ao irregular do CO (Santos et al., 2025).

Dentre os Neossolos Fluvicos, o perfil 1 apresentou a reflectancia mais elevada,
atribuida ao seu maior contetdo de areia, conforme indicado pela classificagdo Psamitico no
terceiro nivel. Neste perfil, observaram-se pequenas absor¢des nos horizontes subsuperficiais,

entre 800-950 nm, indicando baixos teores de 6xidos de ferro (Figura 21).

Figura 21 — Comportamento espectral de perfil 1: NEOSSOLO FLUVICO Psamitico tipico
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Na faixa vis-NIR-SWIR, as fei¢des de absor¢do dos filossilicatos foram mais
intensas em 1900 nm, indicando a predominancia de minerais 2:1. Foram observadas também
absor¢des entre 2340-2400 nm atribuidas as micas, o que condiz com o baixo
desenvolvimento pedogenético dos Neossolos, que mantém caracteristicas do material de
origem (Santos et al., 2025). Estes aspectos, que sdo tipicos de solos pouco evoluidos, afetam
diretamente o comportamento espectral e a sua identificacdo auxilia na classificacdo do solo
no primeiro nivel categorico.

Na regido do MIR, observaram-se absorcdes dos filossilicatos no inicio do
espectro e uma fei¢do mais profunda em torno de 1624 cm™, atribuida a presenca de minerais
do tipo 2:1 (Souza et al., 2021), associada a diferentes formas de CO (Rossel ef al., 2008). Os
picos de quartzo entre 1250-1000 cm™ foram mais suaves nos perfis 7 (Figura 22) e 15

(Figura 23), do que no perfil 1, em virtude de seus menores teores de areia.

Figura 22 — Comportamento espectral de perfil 7: NEOSSOLO FLUVICO Sédico tipico
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Figura 23 — Comportamento espectral de perfil 15: NEOSSOLO FLUVICO Ta Eutréfico
solodico
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Nos Neossolos Quartzarénicos, os dois perfis avaliados apresentaram maior
reflectancia na faixa vis-NIR-SWIR para os horizontes subsuperficiais. Esta maior
reflectancia esta relacionada aos seus menores teores de argila e carbono orginico, em fungao
da textura arenosa tipica desta subordem.

Na faixa MIR, observaram-se absorgdes caracteristicas dos filossilicatos entre
3695-3300 cm™ e do CO entre 2924-2843 cm™. Além disso, verificou-se forte absor¢do em
1750-1250 cm™, atribuida ao elevado conteudo de quartzo no solo. Solos arenosos com baixo
teor de hematita e alto teor de quartzo tendem a exibir acentuada absor¢ao em torno de 1350
cm™, com curvas espectrais mais proximas do eixo X (Di Raimo et al., 2022).

O perfil 2 (Figura 24) apresentou, na faixa vis-NIR, fei¢does de 6xidos de ferro
muito suaves, enquanto as absor¢des dos filossilicatos foram tipicas da caulinita, evidenciadas

pela ocorréncia de um ombro a esquerda da feicao.
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Comportamento espectral de perfil 2: NEOSSOLO QUARTZARENICO Ortico
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Por sua vez, o perfil 13 (Figura 25) exibiu fei¢cdes indicativas da predominancia de

minerais do tipo 2:1, expressas pela absor¢ao mais profunda em 1900 nm. Observou-se ainda

na regido vis-NIR uma concavidade tipica dos o6xidos de Fe. Na faixa MIR, as fei¢des

atribuidas ao CO em 2924-2843 cm'l, foram mais fortes, com absor¢des evidentes no

horizonte superficial e no subsequente, sugerindo maior contetido de CO. Além disso, foi

observada a ocorréncia de um pico em 800 cm™, atribuido ao quartzo (Mendes et al., 2022).



71

Figura 25 — Comportamento espectral de perfil 13: NEOSSOLO QUARTZARENICO
Hidromorfico tipico
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O perfil de Neossolo Litolico apresentou o maior albedo entre todos os perfis
avaliados (Figura 26). Na faixa vis-NIR-SWIR, a alta reflectdncia observada no horizonte
subsuperficial esta associada ao maior conteudo de silte, enquanto, na regido, MIR a elevada
reflectancia do horizonte superficial ¢ atribuida ao maior teor de quartzo. Conforme foi
verificado no perfil 20 de Cambissolo (Figura 16), o alto teor de silte, especialmente no
horizonte subsuperficial que possui menor conteudo de CO, associado a ocorréncia de
argilominerais do tipo 2:1, contribui para o aumento da intensidade de reflectancia,
configurando-se com um padrdo espectral para solos menos intemperizados.

A faixa vis-NIR-SWIR foi afetada pelo maior conteudo de CO, caracteristico
desta ordem de solo, que pode ser constituida por material organico pouco espesso (Santos et
al., 2025). Neste sentido, ocorreu feicdo com aspecto convexo até cerca de 1000 nm, e as
absor¢des dos filossilicatos em 1400, 1900 ¢ 2200 nm foram atenuadas. Observou-se uma
feicdo mais profunda na banda de 1900 nm indicando a predominancia de argilominerais do
tipo 2:1, e uma absorc¢do em 1340 nm atribuida as micas.

Para a regido do MIR, observaram-se absorg¢des associadas aos filossilicatos,
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carbono organico e quartzo, além da presenca de picos associados ao quartzo em 1250-1000
cm™ e 800 cm™, sendo as fei¢des de quartzo mais pronunciadas no horizonte A em virtude de

seu maior conteudo de areia.

Figura 26 — Comportamento espectral de perfil 23: NEOSSOLO LITOLICO Eutréfico tipico
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3.3.3.7 Planossolo

Os quatro perfis de Planossolos avaliados apresentaram elevada reflectancia, com
intensidade variando entre 0,69 e 0,84 na faixa vis-NIR-SWIR, evidenciando a forte
contribui¢do da frag¢do areia para o aumento do albedo. A morfologia espectral foi semelhante
entre os perfis, com aspecto ascendente até aproximadamente 1300 nm, seguido por um
trecho de tendéncia plana, especialmente nos horizontes de maior reflectdncia. Observaram-se
diferencas na intensidade de reflectdncia entre os horizontes, atribuidas a influéncia da
matéria organica € as variacdes granulométricas, de modo que os horizontes A e¢ E, mais
arenosos, exibiram maior reflectancia e comportamento espectral semelhante.

Os Planossolos possuem horizonte superficial (A) ou subsuperficial (E) de

eluviacdo, com textura leve, enquanto o horizonte B exibe, em geral, maior concentragao de
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argila (Santos et al., 2025). Tal configuracao resulta do processo pedogenético de ferrolise,
que promove a destruicdo de argilominerais do horizonte superficial a partir da oxidagao do
Fe e produz gradiente textural no horizonte B (Kdmpf; Curi, 2012).

O comportamento espectral dos perfis de Planossolo Natrico na faixa vis-NIR-
SWIR apresentou feigdes associadas aos 6xidos de Fe, aos filossilicatos 2:1 e 1:1 e as micas.
Estas feicdes foram mais pronunciadas nos horizontes subsuperficiais B, visto que o maior
teor de matéria organica no horizonte A reduz a reflectincia e mascara as absor¢des dos
oxidos de Fe (Dematté; Terra, 2014). Assim, na faixa MIR, as fei¢gdes associadas ao CO foram
mais visiveis no horizonte A, corroborando o seu maior conteido de matéria organica.

O perfil 3 (Figura 27) apresentou feigdes indicativas da ocorréncia de
argilominerais do tipo 2:1 e 1:1, destacando-se dos demais perfis pela alta reflectancia do
horizonte Bt, superior a do horizonte En na faixa vis-NIR-SWIR, possivelmente em razao do

menor teor de CO neste horizonte.

Figura 27 — Comportamento espectral de perfil 3: PLANOSSOLO NATRICO Ortico tipico
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Por sua vez, o perfil 10 (Figura 28) apresentou na faixa vis-NIR-SWIR fei¢des

tipicas de caulinita, com absorc¢des fortes em 1400 e 2200 nm, indicando predominio deste
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mineral. J& no MIR, as absorc¢des tipicas dos filossilicatos no inicio do espectro foram
intensas. As carateristicas nitidas entre 3700-3600 cm™ sdo associadas ao padrio de absor¢io
da caulinita (Di Raimo et al., 2022). Além disso, observou-se que as fei¢des de absor¢ao em
2250 cm™ e os picos de reflectancia entre 1250-1000 cm™, atribuidos ao quartzo, foram mais
pronunciados nos horizontes E em virtude do seu maior teor de areia e menor CO.

O horizonte E ¢ formado a partir do processo de leucinizagdo, em que os
compostos organicos e os 0xidos de ferro sdo removidos e o horizonte E ¢ desenvolvido com
coloragdo clara devido a agao dos minerais primarios, especialmente o quartzo. Além disso,
ocorre remog¢do dos cations basicos (Kdmpf; Curi, 2012). O maior teor de quartzo deste

horizonte se reflete diretamente no aumento da intensidade de reflectancia.

Figura 28 — Comportamento espectral de perfil 10: PLANOSSOLO NATRICO Ortico mésico
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O perfil 17 exibiu na regido vis-NIR-SWIR fei¢des indicativas da predominancia
de argilominerais 2:1, com absor¢dao mais profunda em 1900 nm, enquanto uma leve
dissimetria na curva espectral em 2200 nm evidenciou também a presenca de caulinita em
menor quantidade (Figura 29). Na faixa MIR, o horizonte Al se destacou pela maior

reflectancia, corroborando seu maior contetido da fracao areia.
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Figura 29 — Comportamento espectral de perfil 17: PLANOSSOLO NATRICO Ortico mésico
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O perfil de Planossolo Haplico apresentou pequena diferenca da intensidade de
reflectancia entre os horizontes, atribuida principalmente a granulometria (Figura 30).
Observaram-se na faixa vis-NIR-SWIR feigdes tipicas de caulinita, e absor¢des atribuidas as
micas entre 2300-2440 nm, que tém ocorréncia comum nesse solo, visto que os Planossolos
apresentam teores consideraveis de minerais primarios de facil intemperizagao (Levantamento
de reconhecimento de média intensidade dos solos do Estado do Ceara, 2024). Embora as
absorg¢des associadas as micas tenham ocorrido também nos perfis de Planossolo Natrico, as
feicdes foram mais pronunciadas neste perfil, sugerindo maior conteudo.

Na regido do MIR, ocorreram fei¢des associadas aos filossilicatos, CO e quartzo,
sendo que as absor¢des do CO foram verificadas apenas nos horizontes superficiais em
virtude do contetido mais elevado de matéria organica. Os picos de reflectancia atribuidos ao
quartzo foram mais intensos no horizonte A, indicando conteudo superior da fracdo areia

neste horizonte.
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Figura 30 — Comportamento espectral de perfil 22: PLANOSSOLO HAPLICO Eutréfico
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3.3.3.8 Plintossolo

O perfil de Plintossolo apresentou alta reflectancia, com intensidade maxima de
0,79 (Figura 31). A morfologia espectral exibiu curva de formato inicialmente ascendente,
seguido por trecho plano e, a partir de 1950 nm, leve tendéncia descendente. O
comportamento espectral mostrou diferencas entre as faixas. Na regido vis-NIR-SWIR
observou-se nitida diferenciacdo entre horizontes, com os horizontes subsuperficiais exibindo
maior reflectancia, enquanto os horizontes superficiais apresentaram valores reduzidos. No
MIR, por sua vez, nao houve grandes diferengcas de intensidade, embora o horizonte
superficial tenha mostrado reflectancia ligeiramente maior nas regides associadas ao quartzo.

Apesar de apresentar textura mais arenosa do que os horizontes subsuperficiais, o
horizonte superficial teve sua reflectincia significativamente reduzida pelo maior contetido de
CO, o que também mascarou as feicoes dos 6xidos de ferro e conferiu aspecto convexo a

curva espectral na regido vis-NIR (Figura 31). A maior concentracao de CO € coerente com a
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coloracdo cinzento-escura a bruno-acinzentada, frequentemente observada no horizonte
superficial dos Plintossolos (Levantamento de reconhecimento de média intensidade dos solos
do Estado do Ceara, 2024).

Na faixa vis-NIR-SWIR, foram observadas fei¢cdes acentuadas dos 6xidos de Fe,
indicativas da predominancia de hematita, caracterizada pela reflectdncia mais baixa no inicio
do espectro e concavidade estreita entre 800-1000 nm. A presenca marcante de 6xidos de Fe ¢
tipica deste solo, resultante do processo pedogenético de plintitizacdo, caracterizado pela
translocacdo de Fe na forma reduzida e sua posterior precipitacdo por oxidagao, associada a
dessilicacdo do solo (Kampf; Curi, 2012). Estas caracteristicas foram evidenciadas, sobretudo,
nos horizontes subsuperficiais, que, embora mais argilosos, ndo sofrem efeito do CO.

Na regido do MIR, observaram-se feigdes atribuidas aos filossilicatos, CO e
quartzo, sendo os picos de quartzo em 1250-1000 cm™ e 800 cm™ mais pronunciados no
horizonte A. As feigdes atribuidas ao quartzo foram mais suaves no Plintossolo, em
comparagdo aos perfis de solos mais arenosos. Este comportamento deve-se a textura mais

argilosa deste solo, conforme evidenciado pela sua classificagdo no segundo nivel categorico.

Figura 31 — Comportamento espectral de perfil 24: PLINTOSSOLO ARGILUVICO Eutréfico
petroplintico
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3.3.3.9 Vertissolo

O perfil de Vertissolo apresentou alta reflectancia, com intensidade méaxima de
0,58 (Figura 32). Entretanto, este perfil exibiu o menor albedo entre todos os solos avaliados,
o que ¢ atribuido ao menor teor de areia e a textura média. Os Vertissolos apresentam pequena
variacdo textural ao longo do perfil, geralmente com textura argilosa, embora possam
apresentar textura média (Santos ef al., 2025). Quanto a morfologia espectral, observou-se
formato inicialmente ascendente, seguido por trecho plano a partir de 1450 nm. O
comportamento espectral exibiu diferengas de intensidade de reflectdncia entre os horizontes.

Na faixa vis-NIR-SWIR, o horizonte Cn apresentou curva com suave concavidade
entre 800-1000 nm, indicando presenga de pequena quantidade de 6xidos de Fe, enquanto as
curvas dos demais horizontes exibiram aspecto convexo, associado o seu contetido de CO.
Foram observadas fei¢Oes atribuidas aos argilominerais 2:1, com absor¢ao mais intensa em
1900 nm. Entre 2261-2440 nm, ocorreram absorgdes associadas aos carbonatos ¢ as micas,
comuns a este solo, que possui desenvolvimento incipiente e alta saturagcdo por bases (Santos
et al., 2025), conforme evidenciado pelos teores elevados de Ca e Mg.

A presenca de argilominerais 2:1 € caracteristica dos Vertissolos, nos quais ocorre
o processo pedogenético de vertizagdo. Este processo ¢ tipico de solos com predominio de
argilominerais esmectiticos e resulta na formacdo de fendas, agregados cuneiformes e
superficies de fric¢do. Estes minerais esmectiticos podem formar associagdes estaveis com o
CO, conferindo coloracdo escura aos horizontes superficiais (Kdmpf;, Curi, 2012), o que
contribui para a reducdo da reflectancia destes horizontes.

Na regido do MIR, observou-se que as fei¢cdes atribuidas aos filossilicatos do tipo
1:1 e ao quartzo foram mais suaves, refletindo a mineralogia dos Vertissolos que ¢ dominada
por filossilicatos 2:1 e apresenta teor mais baixo de areia. O horizonte Ap destacou-se na faixa
entre 2000-1250 cm™, com comportamento distinto dos demais horizontes, o que é atribuido
ao seu elevado teor de CO. De modo mais especifico, na regido de 1725-1275 cm™, as fortes
absor¢des sdo atribuidas a diferentes grupos funcionais da matéria organica, associado a
banda de absor¢io da 4gua aproximadamente em 1600 cm™ (Rossel et al., 2008; Zhang;
Hartemink; Huang, 2021), que pode ser amplificada pela dgua adsorvida na estrutura dos

argilominerais 2:1, tipicos dessa classe de solo.
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Figura 32 — Comportamento espectral de perfil 16: VERTISSOLO EBANICO Sédico salino
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3.3.4 Agrupamento de horizontes do solo na faixa espectral vis-NIR-SWIR

A andlise de componentes principais (ACP), aplicada sobre os espectros de
reflectancia suavizados, resultou na extracdo dos cinco primeiros componentes que foram
utilizados para a classificagdo nao supervisionada. Estes componentes principais explicaram
99,5% da variabilidade total dos dados, sendo que o maior percentual de variagdo foi
explicado pelo primeiro componente, com redugdo progressiva nos componentes

subsequentes (Figura 33).



Figura 33 — Variancia explicada pelas cinco primeiras componentes na faixa vis-NIR-SWIR
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A andlise dos autovetores evidenciou as contribuigdes positivas e negativas dos
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valores de reflectancia para a produgdo dos escores de cada componente principal (Figura 34),

de forma a destacar as regides espectrais de maior importancia.

Figura 34 — Autovetores da anélise de componentes principais na faixa vis-NIR-SWIR
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A primeira componente (CP1) foi dominada por autovetores negativos, com
contribuicdo relativamente constante ao longo do espectro. J4 as demais componentes
apresentaram padrdes contrastantes com autovetores positivos € negativos. Nas CP2, CP3 e
CP5 destacaram-se cargas negativas em torno de 2200 nm, regido associada a feicdes de
absor¢do de argilominerais filossilicatos. A CP4, por sua vez, mostrou forte contribuicao
negativa em 1900 nm, que também esta relacionada a esses minerais. Além disso, nas CP3 e
CPS5, ocorreram cargas negativas entre 500-850 nm, regido que ¢ caracteristica de absor¢des
atribuidas aos 6xidos de ferro (Madeira Netto; Baptista, 2000).

A classificacdo ndo supervisionada pelo método K-médias, utilizando os escores
obtidos na ACP, resultou na separacdo das amostras de solos em seis grupos distintos (Figura
35). O ntimero 6timo de grupos foi definido com base no menor valor do coeficiente de

particao (= 0,59) e no maior valor da entropia de particao (= 0,87).

Figura 35 — Agrupamento das amostras de solos com escores da ACP na faixa vis-NIR-SWIR
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A quantidade de amostras de solo nos grupos, bem como a identificacdo dos
horizontes pedoldgicos que integraram cada grupo e a respectiva classificacdo do solo pode

ser visualizada na Tabela 2.
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Tabela 2 — Identificagdo de amostras do solo por grupo na faixa vis-NIR-SWIR

Horizontes
Grupos A AB E BA B BC C Total Solos
1 1 1 1 3 2 8 TXp, SNo, PVd, TCo, FTe
RQo, SXo, CXe, PVAd, LAd, PVAd,
2 1 2 3 12 5 23
CXd
3 1 10 11 PACe, PAd, PAdx, SNo, SXe
RYq, RYn, GZn, SNo, CXe, RQg, SNo,
4 12 3 12 27
PVd, SXe, RLe
SNo, TXp, RYn, GZn, PVAd, RYe, VEn,
5 6 1 2 1 15 25
PVAd, CXd
RQo, PACe, PAd, GZn, PAdx, SNo,
6 10 4 1 1 16

LAd, PVAd, FTe

As linhas representam os grupos e as colunas representam os horizontes.
Fonte: A autora.

Ao analisar os agrupamentos, observou-se, de modo geral, que os grupos 1 e 3
concentraram, principalmente, amostras do horizonte B textural e suas transi¢des. Os grupos 2
e 5 reuniram amostras dos horizontes superiores e inferiores, embora, tenha havido
predominio de horizontes de subsuperficie. O grupo 4 caracterizou-se pela predominancia de
amostras superficiais A e subsuperficiais C, além de algumas ocorréncias do horizonte E. Ja
no grupo 6 prevaleceram amostras dos horizontes superficiais e de suas transicdes,
evidenciando a influéncia da posi¢ao do solo na resposta espectral.

De forma semelhante, Dematté et al. (2019) também identificaram seis grupos
espectrais ao classificar espectros na faixa vis-NIR-SWIR de solos provenientes de diferentes
estados do Brasil. Os autores observaram que o padrdo espectral destas classes estd
diretamente ligada aos teores de carbono organico, aos 6xidos de Fe, a mineralogia da argila e
a distribuicdo granulométrica. Além dos atributos citados, no presente estudo o agrupamento
dos solos também foi igualmente influenciado pelo acimulo de sais, o que torna estes
resultados inovadores.

Os resultados obtidos indicaram que a clusterizagdo das amostras de solos nao
acompanhou a classificacao taxondmica dos perfis, uma vez que os solos pertencentes a uma
mesma ordem foram distribuidos em clusters distintos. Entretanto, os agrupamentos refletiram
uma tendéncia de distingdo entre horizontes, sugerindo que as fei¢des espectrais capturam

diferencas estruturais e composicionais do solo. Embora os grupos tenham se diferenciado em
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funcao dos horizontes, observou-se na classificagdo com a faixa vis-NIR-SWIR a tendéncia
de agrupar amostras com maior estabilidade vertical, de modo que solos com horizontes mais
homogéneos, como os Neossolos, mantiveram clusters estaveis ao longo do perfil.

A 1identificagdo dos horizontes pedologicos ¢ uma pratica indispensdvel para a
classificagdo dos solos, visto que corresponde ao local de atuagdo dos processos
pedogenéticos e preserva caracteristicas fundamentais que auxiliam na compreensdo da
génese (Zhang; Hartemink; Huang, 2021). Nesta perspectiva, a espectroscopia de reflectancia
demonstrou capacidade para captar nuances ligada a composicdo e a diferenciacao
pedogenética dos horizontes, o que se refletiu na organizagdo espectral em funcdo da
estratificacdo vertical dos perfis de solo.

Esta tendéncia de distribuicdo dos agrupamentos dos solos também foi verificada
por meio da analise do comportamento espectral médio de cada cluster, a partir dos dados de

reflectancia suavizados (Figura 36).

Figura 36 — Espectros de reflectancia médio por grupo na faixa vis-NIR-SWIR
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O comportamento espectral médio dos grupos formados apresentou alta
reflectancia, alcangcando intensidade superior a 0,50 em todos os grupos. Corroborando este

resultado, Dematté et al. (2019) também observaram elevado albedo nos solos do bioma
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Caatinga, tendo sido este comportamento atribuido a predominancia da fragdo areia nos solos,
associado ao menor conteudo de carbono de organico em virtude das altas temperaturas que
promovem a aceleragdo da decomposi¢do da matéria organica do solo.

Os grupos 1 e 3 apresentaram comportamento espectral médio similar, com
feicdes tipicas de oxidos de Fe - goethita e hematita na regido vis-NIR. Os espectros desses
grupos exibiram também absorgdes em 1400 e 1900 nm associadas as hidroxilas dos
argilominerais 2:1 ou a agua estrutural desses minerais. Além disso, observou-se absorgdes
bem definidas em torno de 2200 nm com um ombro do lado esquerdo, atribuida a vibragao da
ligagdo AI-OH da caulinita (Meneses; Almeida; Baptista, 2019), e fei¢des a partir de 2300 nm
associadas as micas. O grupo 3 exibiu feicao intensa em 2200 nm, indicando predominancia
da caulinita. Esses grupos reuniram horizontes subsuperficiais de Argissolos, Luvissolos,
Planossolos e Plintossolos, se caracterizando pela presenga de 6xidos de Fe e acumulagao de

argila, que foi corroborado pelo teor superior dessa fracao do solo (Figura 37c).

Figura 37 — Variabilidade dos atributos do solo (g kg-') por grupo na faixa vis-NIR-SWIR: a)
areia; b) silte; c) argila
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O grupo 2 apresentou feigdes caracteristicas de 6xidos de Fe na regido vis-NIR,
contudo estas fei¢coes foram suaves. Ocorreram, ainda, absor¢des em 1400, 1900 ¢ 2200 nm,

tipicas de argilominerais. Neste cluster incidiram horizontes de Cambissolos, Neossolo
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Quartzarénico, Argissolo Vermelho e Latossolo Amarelo. As feigdes dos 6xidos de ferro sdo
atribuidas aos dois ultimos solos, enquanto os argilominerais compdem todas as classes de
solos. Os resultados sugerem que este cluster nao refletiu um processo pedogenético
especifico, visto que agregou solos com diferentes graus de intemperismo e formados por
processos distintos. Em contrapartida, as amostras que compdem o grupo se assemelharam
pelo alto contetido de areia (Figura 37a), resultando em elevada reflectancia (> 0,60).

No grupo 4, observaram-se absor¢des em 1400, 1900 e 2200 nm, sendo as duas
ultimas fei¢des mais profundas e sem ocorréncia de degrau, indicando a prevaléncia de
argilominerais 2:1. Este grupo apresentou o maior fator de reflectancia (> 0,70), o que se deve
a ocorréncia de perfis de Neossolos e de horizontes superficiais de Cambissolos e
Planossolos. Tais amostras caracterizam-se pelo elevado contetido de areia, conferindo ao
grupo maior destaque para esse atributo (Figura 37a) e propiciando maiores reflectancias.
Além disso, ocorreram absor¢des na faixa 2300-2400 nm, tipicas do grupo das micas,
minerais comuns em solos menos evoluidos (Meneses; Almeida; Baptista, 2019). Estas
caracteristicas sugerem o predominio de processos incipientes no grupo 4.

No grupo 5 incidiram absorg¢des em torno de 1400, 1900 e 2200 nm, com a feigao
de 1900 nm mais intensa indicando o predominio de argilominerais 2:1. O espectro médio
deste cluster apresentou a menor reflectancia de todos os grupos, ndo ocorrendo feigdes de
absor¢do na regido vis-NIR, que exibiu aspecto convexo. Estas caracteristicas podem ser
atribuidas ao maior conteudo de argila (Figura 37c¢), associado ao alto teor de CO devido o
agrupamento de horizontes superficiais (Figura 38a). Dentre os solos deste cluster,
predominaram amostras de Gleissolo, Neossolo Fuvico, Planossolo Natrico e Vertissolo, os
quais sofrem efeito da 4dgua e exibiram problemas de sais, 0o que sugere o agrupamento,

sobretudo, com base na CE, Na e PST (Figura 38), conferindo destaque para estes atributos.
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Figura 38 — Variabilidade dos atributos do solo por grupo na faixa vis-NIR-SWIR: a) carbono
organico (gkg-'); b) pH; c) sédio (cmol. kg-'); d) PST; e) CE (dS m-')
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Fonte: A autora.

O comportamento espectral médio do grupo 6 apresentou feicoes tipicas de
absorc¢des dos argilominerais, com destaque para as bandas mais intensas em torno de 1400 e
2200 nm, indicativas da presenca de caulinita. Neste cluster, foram agrupadas amostras de
Latossolo, Planossolo, Plintossolo e Argissolo, com destaque para a ocorréncia de solos mais
evoluidos e predominio de horizontes superficiais, o que propiciou na faixa vis-NIR aspecto
convexo, com auséncia de feigdes de absor¢do. Este comportamento estd relacionado ao
elevado teor de CO presente nos horizontes superficiais (Figura 38a), visto que a matéria
organica, formada por diferentes formas de C, € o principal responsavel pela diminui¢dao da
reflectancia na regido vis-NIR (Madeira Netto; Baptista, 2000). Com isso, evidencia-se que
este cluster se caracterizou pelo agrupamento de amostras superficiais com alto teor de areia.

No que se referem aos nutrientes, estes ndo alteram diretamente o espectro, de
modo a ndo apresentar caracteristicas de absor¢do. Entretanto, normalmente encontram-se
adsorvidos nos grupos funcionais de compostos minerais ¢ organicos (Rizzo et al., 2021).
Neste contexto, as maiores concentragdes de macronutrientes observadas nos grupos 1 e 5
(Figura 39) podem estar associadas aos contetidos elevados de argila e carbono organico

destes grupos (Figuras 37 e 38).
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Figura 39 — Variabilidade dos atributos do solo (cmol, kg-') por grupo na faixa vis-NIR-
SWIR: a) calcio; b) magnésio; c) potdssio; d) nitrogénio (gkg-')
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3.3.5 Agrupamento de horizontes do solo na faixa espectral MIR

Na andlise de componentes principais (ACP) realizada com os espectros de
reflectancia MIR suavizados, os cinco primeiros componentes explicaram 98,2% da
variabilidade total dos dados. O maior percentual de variagao foi explicado pela primeira

componente principal (CP1 = 69,3%), com redugdo progressiva nas subsequentes (Figura 40).



Figura 40 — Variancia explicada pelas cinco primeiras componentes na faixa MIR
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A partir da analise dos autovetores observaram-se as contribui¢des dos valores de

reflectancia para a producdao dos escores de cada componente principal (Figura 41), o que

propiciou destacar as regides espectrais de maior importancia.

Figura 41 — Autovetores da analise de componentes principais na faixa MIR
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As componentes exibiram padrdes contrastantes com autovetores positivos e
negativos, com exce¢do da primeira componente principal (CP1) em que os autovetores foram
negativos. As CP1 e CP5 apresentaram forte contribuicdo negativa em torno de 3600 cm™,
regido caracterizada por absorcdes de filossilicatos 2:1 e 1:1. Nas CP2 e CP5 destacaram-se
cargas positivas na faixa de 1230-1175 cm™, com a formacdo de picos altos de reflectancia. A
CP3 também exibiu picos de reflectancia nesta regido, contudo menos intensos. Os picos por
volta de 1200 cm™ sdo atribuidos ao quartzo e ao ferro cristalino. A CP4, por sua vez, mostrou
forte contribuicio negativa na regido de 2200-2169 cm™. As bandas de absor¢do entre 2233-
1625 sdo atribuidas a silica presente no quartzo e nos filossilicatos (Mendes et al., 2022).

Para a classificag@o nao supervisionada com o método K-médias foram utilizados
os escores das cinco primeiras componentes principais. A classificacio resultou na divisdo das
amostras de solos em nove grupos distintos (Figura 42), com trés grupos a mais do que a
classificagdo feita com os espectros de vis-NIR-SWIR. O namero 6timo de grupos foi
determinado com base no menor valor do coeficiente de parti¢ao (= 0,64) e o maior valor da

entropia de parti¢do (= 0,83).

Figura 42 — Agrupamento das amostras de solos com escores da ACP na faixa MIR
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A quantidade de amostras de solo em cada grupo, a identificagdo dos horizontes
pedologicos que integraram os grupos e a respectiva classificacdo taxondmica do solo pode

ser observada na Tabela 3.

Tabela 3 — Identifica¢do de amostras do solo por grupo na faixa MIR

Horizontes
Grupos A AB E BA B BC C Total Solos
1 4 3 1 1 4 13 PACe, PAd, PAdx, LAd, SXe
2 1 5 6  RYq, RQg
TXp, GZn, LAd, RYe, VEn, PVd, CXd,
3 6 2 1 9
TCo
4 2 I 1 14 18 RYq, RYn, GZn, SNo, CXe, RYe
PAd, PAdx, SNo, CXe, PVAd, PVd, SXe,
5 1 1 6 8
FTe
6 6 1 5 12 RQo, PACe, PVAd, LAd, SNo, SXe
SNo, PAd, PVAd, SNo, PVAd, CXd, SXe,
7 7 2 1 1 3 14
FTe
RYq, SNo, TXp, RYn, CXe, RYe, VEn,
8 1 2 8 4 6 21
SNo, PVd, TCo, SXe
9 3 1 2 1 7 SNo, CXe, RLe

As linhas representam os grupos e as colunas representam os horizontes.
Fonte: A autora.

A andlise dos agrupamentos evidenciou, de modo geral, que o grupo 1 concentrou
horizontes superficiais e subsuperficiais, porém com prevaléncia do horizonte A e sua
transicdo. Nos grupos 2 e 4 houve maior predominancia de amostras do horizonte C. Os
grupos 3, 6, 7 ¢ 9 agruparam amostras tanto superficiais quanto subsuperficiais (E, B e C),
embora tenha prevalecido o horizonte A. Nos grupos 5 e 8, por sua vez, verificou-se a
ocorréncia de amostras subsuperficiais, com predominio do horizonte B textural.

A classificacdo dos solos na faixa MIR seguiu a mesma tendéncia observada na
faixa vis-NIR-SWIR, com o agrupamento estruturado principalmente em fun¢do dos
horizontes. Entretanto, a regido MIR apresentou maior sensibilidade para detectar variacdes
internas ao longo do perfil, visto que perfis com heterogeneidade no material de origem, como
o Neossolo Fluvico, mostraram maior diferenciacao entre clusters. Isso deve-se ao fato de

que, no MIR, manifestam-se as vibragdes fundamentais da maioria dos compostos organicos e
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minerais do solo, o que gera informagdes mais especificas sobre as caracteristicas do solo em
virtude do tipo de interagao da energia (Garrett ef al., 2022).

De maneira andloga, Zhang; Hartemink; Huang (2021) observaram que amostras
de diferentes ordem de solos podem ser agrupadas em um mesmo cluster em fun¢do de
similaridades na composicdo, uma vez que as caracteristicas espectrais dos solo estdo
intensamente relacionadas aos horizontes pedoldgicos e as propriedades associadas. Contudo,
de modo oposto, estes autores identificaram menor nimero de grupos, totalizando 8 na faixa
MIR. Do mesmo modo, Mendes ef al. (2022) observaram apenas 5 grupos espectrais nesta
faixa. Diferentemente do presente estudo, esses autores nao avaliaram solos com expressivo
acumulo de sais, caracteristica que possivelmente contribuiu para o maior numero de grupos.

As tendéncias de distribui¢do seguidas pelos nove grupos espectrais da faixa MIR,
foram melhores evidenciadas a partir da andlise do comportamento espectral médio de cada
cluster, empregando dados de reflectancia suavizados. O maior niimero de feicdes observadas

nesta regido do espectro contribuiu para o aumento do niimero de clusters (Figura 43).

Figura 43 — Espectros de reflectancia médio por grupo na faixa MIR
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Fonte: A autora.

Avaliando-se o comportamento espectral médio dos grupos, observou-se que os

clusters 2, 3, 6 e 9 destacaram-se por exibir comportamento distinto em algumas regioes. Os
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grupos 2 e 9 apresentaram alta reflectancia, com fei¢cdes de absor¢ao pronunciadas, atribuidas
aos filossilicatos entre 3695-3622 e 3529-3394 cm™ e ao quartzo em 2250-1620 cm’™,
evidenciando a forte contribui¢do destes atributos nos grupos. Todavia, o cluster 2 apresentou
pico associado ao quartzo em 1250-1000 cm™ mais pronunciado, em razio do maior contetido
de areia (Figura 44a). Ja o grupo 9, exibiu fei¢des de caulinita nitidas com picos entre 1780-
1500 cm'l, e feicdo espectral estreita em 1820 cm” relacionada a presenca de silicatos
(Mendes et al., 2022), além de absor¢des de CO entre 1700-1640 cm™ (Rossel et al., 2008).
Nesses grupos ocorreram, principalmente, amostras dos horizontes A e C,
oriundas dos Neossolos, do Planossolo Natrico e do Cambissolo Haplico, evidenciando o
agrupamento de solos com desenvolvimento incipiente. No grupo 2 prevaleceram amostras do
horizonte C, o que propiciou a alta reflectancia devido ao elevado contetdo de areia e
reduzido teor de CO. No grupo 9, por sua vez, predominaram amostras do horizonte A e,
embora tenha apresentado elevado conteudo da fracdo areia, o alto teor de CO oriundo dos

horizontes superficiais reduziu os picos reflectancia (Figuras 44a e 45a).

Figura 44 — Variabilidade dos atributos do solo (g kg-') por grupo na faixa MIR: a) areia; b)
silte; ¢) argila
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O grupo 3 apresentou albedo reduzido e comportamento espectral distinto de
todos os clusters na faixa de 2000-1250 cm™. A baixa reflectincia, com as feicdes tipicas de

quartzo reduzidas, deve-se ao menor contetido de areia e o teor mais elevado de CO (Figuras
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44a e 45a). Por sua vez, as absorcdes entre 1750-1430 cm™ sdo atribuidas ao alto teor de CO e
a presenga de carbonatos (Soriano-Disla et al., 2014; Terra et al., 2021). Além disso, o maior
teor de argila deste grupo (Figura 44c¢) contribuiu para a ocorréncia de fei¢des pronunciadas.

No grupo 3 ocorreu, sobretudo, horizontes superficiais de Argissolo, Cambissolo,
Gleissolo, Luvissolo, Neossolo Fluvico e Vertissolo. Diante disso, observou-se que o grupo
reuniu amostras de solos menos desenvolvidos, € concentrou também amostras com alto
conteudo de CO, ricas em bases e com ocorréncia de carbonatos, o que foi corroborado pelo
maior conteudo de macronutrientes (Figura 46). Esta caracteristica ¢ comum em solos do
Semiarido, os quais podem ser formados a partir de rochas calcérias, apresentando horizonte
superficial com alto contetido de MO e saturagdo por bases (Araujo Filho et al., 2022).

O comportamento espectral do grupo 6 apresentou fei¢des tipicas de quartzo bem
pronunciadas, embora este cluster tenha exibido baixa reflectdncia. As fei¢des pronunciadas
do quartzo entre 2250-2000, 1250 e 800 cm™ sdo atribuidas ao alto teor de areia do grupo
(Figura 44a). Por outro lado, a baixa reflectancia esta associada ao um maior contetido de CO
(Figura 45a) e a ocorréncia de 6xidos de Fe, os quais promovem espectros descendentes
(Mendes et al., 2022). Este grupo concentrou, sobretudo, amostras superficiais de Argissolo
Acinzentado, Argissolo Vermelho-Amarelo, Latossolo Amarelo e Neossolo Quartzarénico,

evidenciando o agrupamento de solos com alto teor de areia e com presenca de 0xidos de Fe.

Figura 45 — Variabilidade dos atributos do solo por grupo na faixa MIR: a) carbono organico
(gkg-"); b) pH; ¢) sodio (cmol kg-"); d) PST; e) CE (dS m-')
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Quanto aos demais grupos (1, 4, 5, 7 e 8), observou-se que ocorreu
comportamento espectral muito similar, porém com distingdo da intensidade de reflectancia.
Estes grupos exibiram baixa reflectancia e absor¢des mais suaves associadas aos filossilicatos
e oxido de aluminio (3695-3622 ¢ 3529-3394 cm™), ao CO (2924-2843 cm'l) e ao quartzo
(2250-1620 ¢ 1250-1000 cm™). Nos grupos 1 e 7 se concentraram, sobretudo amostras do
horizonte A, provenientes de Argissolos, Cambissolo, Latossolo, Planossolo e Plintossolo, os
quais apresentam camada superficial mais arenosa. Ja o cluster 4 reuniu amostras do horizonte
C, oriundas de Gleissolo Salico, Neossolo Fluvico e Planossolo Natrico, promovendo no
grupo alto pH e elevada PST (Figura 45).

Para os grupos 5 e 8, observou-se que os picos tipicos de quartzo em 1250-1000
cm’ foram muito reduzidos, o que foi atribuido aos seus maiores teores de argila (Figura 44c).
Estes clusters reuniram amostras subsuperficais de Argissolo, Cambissolo, Luvissolo,
Planossolo, Plintossolo e Vertissolo, evidenciando o agrupamento com base no processo de
acumulacdo de argila. Além disso, verificou-se que o grupo 8 concentrou amostras com
acimulo de sais tanto no horizonte B quanto no C, conforme evidenciado pelos altos valores
de Na, PST e CE deste grupo, associado ao acumulo de Ca e MG (Figuras 45 e 46). Assim,

estes aspectos sugerem o agrupamento com base no acumulo de cations trocaveis e sais.

Figura 46 — Variabilidade dos atributos do solo (cmol. kg-") por grupo na faixa MIR: a) célcio;
b) magnésio; c) potéssio; d) nitrogénio (gkg-')
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Mediante os resultados obtidos na classificagdo, verificou-se que a faixa MIR
apresentou maior capacidade de detectar alteragdes sutis ao longo do perfil, quando
comparada a faixa vis-NIR-SWIR. Este comportamento corrobora os achados de Zhang;
Hartemink; Huang (2021), que observaram boa diferenciacdo entre os horizontes do solo na
faixa MIR, atribuidas as associagdes entre os atributos que compdem os horizontes do solo e a
interagdo destes com a radiagdo eletromagnética nesta faixa.

Todavia, considerando que ambas as regides espectrais foram capazes de detectar
transi¢des nitidas entre horizontes, agrupando amostras de horizontes com caracteristicas
semelhantes em clusters comuns, infere-se que a analise espectral tem potencial de ser usada

na identificag¢@o de horizontes, especialmente daqueles com caracteristicas contrastantes.

3.4 Conclusoes

A andlise do comportamento espectral dos solos fornece informagdes de extrema
relevancia para a Ciéncia do Solo, confirmando, conforme a hipodtese proposta, a capacidade
da espectroscopia de reflectdncia em caracterizar o solo de forma eficiente. Evidencia-se que
a analise espectral permite identificar feicOes associadas a atributos usados na classificacdo do
solo no primeiro nivel categdrico, como o acumulo da argila, a presenca de 6xidos de Fe e de
minerais menos intemperizados, o que refor¢a o potencial da técnica em estudos pedoldgicos.

Do ponto de vista dos agrupamentos, constata-se que a variabilidade espectral esta
diretamente relacionada as caracteristicas dos horizontes, que se diferenciam em func¢do da
posicdo no perfil. Tendo em vista que os horizontes subsuperficiais sdo diagnosticos, e
apresentam menor influéncia da matéria organica, as feicdes espectrais caracteristicas das
classes de solo sdao mais bem expressas nestes horizontes. Além disso, verifica-se uma
complementariedade entre os espectros, com o vis-NIR-SWIR captando diferencas mais
expressivas nos solos, como variagdes texturais, enquanto o MIR destaca variagdes mais sutis
no perfil, como o acimulo de sddio. Caracteristica que nao foi identificada em outros estudos.

Os resultados obtidos representam adequadamente e em primeira mao os
comportamentos espectrais de solos do Nordeste Brasileiro, caracterizados pela alta
reflectancia, presenca de fei¢des de absorcdo indicadoras de minerais primarios e secundarios
de facil intemperizagdo (filossilicatos do tipo 2:1) e indicadoras de carbonatos. Embora o
acimulo de sais, uma das principais caracteristicas destes solos, ndo seja identificado
diretamente no espectro, a diferenciacdo de grupos com essa caracteristica contribui para o

mapeamento de areas susceptiveis a degradacao por salinizacao e sodificacao.
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4 CAPITULO 11 - PREDICAO DE ATRIBUTOS FiISICOS E QUIMICOS COM
ESPECTROSCOPIA DO VISIVEL AO INFRAVERMELHO MEDIO EM SOLOS DO
NORDESTE DO BRASIL

Resumo

O monitoramento das caracteristicas edaficas ¢ primordial para o manejo adequado e a
conservagao dos solos, sendo especialmente importante em areas sob forte exploracdo e
susceptiveis a degradacdo. Assim, o objetivo desse estudo foi quantificar os atributos fisico-
quimicos, bem como a salinidade e sodicidade de solos do Nordeste brasileiro utilizando
espectroscopia de reflectdncia na faixa de 350 — 15000 nm e algoritmos de estatistica
multivariada. Foram avaliadas 114 amostras de 24 perfis de solos provenientes de municipios
do Ceara. Na anélise do solo com metodologia convencional foi determinado a granulometria,
carbono organico, nitrogénio, fésforo, potassio, calcio, magnésio, sédio, aluminio trocével,
percentagem de sdédio trocavel, condutividade elétrica, pH (H,O — 1:2,5), soma de bases,
capacidade de troca catidnica e saturacdo por bases. Na analise espectral foi avaliado a
reflectancia do solo nas faixas do visivel, infravermelho préximo, infravermelho de ondas
curtas (vis-Nir-SWIR) e infravermelho médio (MIR). O resultado da analise convencional foi
avaliado com estatistica descritiva. Os dados espectrais foram pré-processados com as
técnicas de conversao para absorbancia e suavizacao com o filtro Savitzky-Golay. Os modelos
preditivos dos atributos foram desenvolvidos com os espectros brutos e pré-processados
associados aos algoritmos de Regressao por Minimos Quadrados Parciais (PLSR), Maquina
de Vetor Suporte com fungdes Kernel lineares e radiais (SVM-Linear e SVM-Radial) e
Algoritmo Cubista (CA). O desempenho dos modelos preditivos foi avaliado pelas métricas
de R?, RMSE, RPD e RPIQ. Os modelos desenvolvidos na regido do infravermelho médio
superaram o desempenho das modelagens realizadas na faixa do visivel ao infravermelho de
ondas curtas, com exce¢do das predicdes de Na, PST e V. As predigdes da salinidade e
sodicidade apresentaram desempenho razodvel. Dentre os algoritmos de regressdo e as
técnicas de pré-processamento avaliadas, o algoritmo PLSR e a suavizacdo com o filtro
Savitzky-Golay se destacaram na produgao dos melhores modelos. A espectroscopia foi capaz
de predizer os atributos do solo com, no minimo, desempenho satisfatério, com exce¢ao do

calcio, que apresentou desempenho insatisfatorio em todas as faixas espectrais.

Palavras-chave: quantificagdo; atributos fisico-quimicos; salinidade; sodicidade.
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Abstract

Monitoring soil characteristics is essential for proper soil management and conservation, and
is especially important in areas under heavy exploitation and susceptible to degradation. Thus,
the objective of this study was to quantify the physical-chemical attributes, was well as the
salinity and sodicity of soils in Northeastern Brazil using reflectance spectroscopy in the
range of 350-15,000 nm and multivariate statistical algorithms. A total of 114 samples from
24 soil profiles from municipalities in Ceara were evaluated. In the soil analysis using
conventional methodology, the following were determined: particle size, organic carbon,
nitrogen, phosphorus, potassium, calcium, magnesium, sodium, exchangeable aluminum,
percentage of exchangeable sodium, electrical conductivity, pH (H20 — 1:2.5), sum of bases,
cation exchange capacity, and base saturation. In spectral analysis, soil reflectance was
evaluated in the visible, near-infrared, short-wave infrared (vis-Nir-SWIR), and mid-infrared
(MIR) ranges. The results of conventional analysis were evaluated using descriptive statistics.
The spectral data were preprocessed using absorbance conversion techniques and smoothing
with the Savitzky-Golay filter. The predictive models of the attributes were developed with
the raw and preprocessed spectra associated with the Partial Least Squares Regression
(PLSR), Support Vector Machine with linear and radial kernel functions (SVM-Linear and
SVM-Radial), and Cubist Algorithm (CA) algorithms. The performance of the predictive
models was evaluated using the metrics R>, RMSE, RPD, and RPIQ. The models developed in
the mid-infrared region outperformed the models developed in the visible to shortwave
infrared range, with the exception of the predictions for Na, PST, and V. The predictions for
salinity and sodicity showed reasonable performance. Among the regression algorithms and
preprocessing techniques evaluated, the PLSR algorithm and smoothing with the Savitzky-
Golay filter stood out in producing the best models. Spectroscopy was able to predict soil
attributes with at least satisfactory performance, with the exception of calcium, which

performed unsatisfactorily in all spectral ranges.

Keywords: quantification; physical-chemical attributes; salinity; sodicity.
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4.1 Introducao

O monitoramento eficiente das caracteristicas pedologicas ¢ indispensavel para
identificar o potencial e as limitacdes do solo e promover o seu manejo sustentavel (Beniaich
et al., 2025). Essa necessidade ¢ especialmente importante em areas sob intensa exploragdo
antropica e com solos susceptiveis a degradacdo, como o Nordeste do Brasil, em que as
praticas agricolas e extrativistas, intensificada pelas condigdes climaticas da regido, tém
acelerado o processo de degradagao do solo (Souza; Leite; Medeiros, 2021).

A regido Nordeste apresenta significativa variedade edafoclimatica, abrigando
quatro biomas e a maior diversidade edafica do pais. Essa variedade resulta em solos em
diferentes estadios de desenvolvimento e com atributos muito heterogéneos (Souza; Leite;
Medeiros, 2021). O bioma Caatinga, predominante na regido, compde as florestas tropicais
sazonalmente secas, que apresentam-se distribuidas pelo mundo, contudo esse bioma ¢
endémico e ocorre exclusivamente no Brasil, caracterizando-se por um clima semiarido, com
alta sazonalidade e variabilidade espacial das chuvas (Silva et al., 2025).

Nesse contexto, a diversidade litologica da Caatinga propicia a formagdo de
variados tipos de solos, sendo comum a ocorréncia de solos pouco profundos e pouco
desenvolvidos, se comparados aos de regides tropicais imidas. Nesses solos, os processos de
formacdo incluem a argiluviacdo, salinizagdo e sodificagdo (Souza et al, 2022).
Consequentemente, a presenca de sais ocasionando solos salinos e sodicos, ¢ frequente.
Embora a degradagdo pelo acumulo de sais seja uma preocupagao global, este fenomeno ¢
mais comum em regides aridas e semiaridas, devido ao manejo inadequado e as condigdes
climaticas (Hailu; Mehari, 2021).

Para o manejo adequado e a conservagdo desses solos, sdo essenciais as praticas
de mapeamento e a caracterizagdo dos atributos. Convencionalmente, essa caracterizagdao ¢
feita por meio de andlises laboratoriais de quimica umida, as quais, embora precisas,
envolvem multiplas etapas analiticas, com a utilizagdo de reagentes quimicos e equipamentos
de elevado custo (Beniaich et al., 2025). Além de possuirem potencial de causar
contaminagao ambiental pelo descarte inadequado dos residuos gerados.

Como alternativa promissora de andlise, a espectroscopia de reflectancia destaca-
se por ser um método rapido, ndo destrutivo, e isento de agentes quimicos. Essa técnica
baseia-se na interagdo entre e a radiacdo eletromagnética nas faixas do visivel (vis: 350-700
nm), infravermelho proximo (NIR: 700-1100 nm), infravermelho de ondas curtas (SWIR:
1100-2500 nm) e infravermelho médio (MIR: 2.500-25.000 nm ou 4.000-400 cm '), e os
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componentes organicos e minerais do solo (Mendes et al., 2022).

A faixa vis-NIR-SWIR vem sendo mais amplamente estudada para a previsdo dos
atributos do solo (Padarian; Minasny; Mcbratney, 2019), o que deve-se principalmente a
portabilidade do equipamento e o preparo simplificado de amostras. A faixa MIR por sua vez,
embora necessite de equipamento mais oneroso e preparo rigoroso das amostras, os dados
gerados possuem maior acuracia (Lotfollahi et al., 2023). Estudos demonstram que modelos
obtidos com dados MIR comumente superam o desempenho daqueles gerados com dados vis-
NIR-SWIR (Dangal et al., 2019), o que justifica o estudo mais profundo dessa faixa espectral.

Apesar dos avangos que a espectroscopia tem obtido para a predicdo dos atributos
do solo (Tavakoli et al., 2023), a heterogeneidade pedoldgica limita a ado¢do de modelos
universais. Ademais, a aplicagdo dessa técnica em solos das regides aridas e semiaridas ainda
¢ incipiente (Taghdis; Farpoor; Mahmoodabadi, 2022). Torna-se, portanto, urgente realizar
estudos espectrais nessas regides, uma vez que modelos calibrados para uma condigao
edafoclimatica particular raramente sao aplicaveis em outra (Moura-Bueno ef al., 2020).

No Brasil, essa lacuna € ainda mais acentuada, os solos do semiarido, localizados
majoritariamente na regido Nordeste, sdo pouco investigados espectralmente, sobretudo na
faixa MIR (Santos et al., 2020). A baixa representacdao da regido ¢ clara nas bases de dados
nacionais, de modo que a biblioteca espectral de solos do Brasil possui apenas 23% de suas
amostras oriundas do Nordeste, com a maioria concentrada no estado de Pernambuco
(Mendes et al., 2022), o que nao reflete completamente a variedade edafica da regido.

Diante desse cenario, parte-se da hipotese de que a espectroscopia de reflectancia
do visivel ao infravermelho médio pode predizer com precisdo em solos do Nordeste
brasileiro os atributos fisico-quimicos, como granulometria, salinidade, sodicidade e demais
propriedades quimicas, fornecendo uma alternativa eficiente as analises tradicionais.
Adicionalmente, espera-se que a modelagem na faixa MIR proporcione ganhos significativos
na qualidade das predi¢cdes, em funcdo das interagdes mais fortes da radiagdo com os

constituintes do solo nessa regido espectral.

4.1.1 Objetivos

O objetivo principal deste estudo foi quantificar os atributos fisico-quimicos, bem
como a salinidade e sodicidade de solos do Nordeste brasileiro utilizando a espectroscopia de
reflectancia na faixa de 350 — 15000 nm e algoritmos de estatistica multivariada.

Como objetivos especificos foram almejados:
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a) Investigar o potencial da espectroscopia para predizer os seguintes atributos:
granulometria, nitrogénio, fésforo disponivel, potédssio, calcio, magnésio, sodio,
aluminio, carbono organico, pH (H,O), condutividade elétrica, capacidade de troca
catidnica, soma de bases, saturacao por bases e percentagem de sodio trocavel;

b) Quantificar os atributos relacionados a salinidade ¢ sodicidade do solo;

c¢) Identificar combinagdes 6timas de pré-processamentos (reflectancia, absorbancia e
suavizacdo) e algoritmos (regressdo linear e aprendizado de maquinas) que
potencializam a predi¢ao dos atributos;

d) Avaliar o desempenho das predi¢cdes por meio de métricas estatisticas e identificar

o melhor modelo para cada atributo do solo.

4.2 Material e métodos

Nesta se¢do sdo descritas as metodologias empregadas para a analise tradicional e
espectral do solo, bem como os procedimentos estatisticos aplicados visando a quantificagdo

dos atributos fisico-quimicos.

4.2.1 Selecdo das amostras

O estudo foi conduzido no estado do Ceara, regido Nordeste do Brasil. O estado
possui 184 municipios distribuidos em sete mesorregides. As amostras de solos avaliadas sdao
provenientes de 13 municipios cearenses, onde predominam os climas subumido Umido,

subuimido seco e semiarido (Figura 47).
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Figura 47 — Mapa com os municipios do estado do Ceara de coleta dos solos
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Fonte: elaborada pela autora.

Foram avaliadas 114 amostras de solos oriundas de 24 pontos, de modo que cada
ponto correspondeu a um perfil de solo e cada amostra representou um horizonte pedolédgico.
Os perfis foram classificados em nove ordens taxonomicas segundo os critérios do Sistema
Brasileiro de Classificacao do Solo (Santos et al., 2025), sendo estas: Argissolo, Cambissolo,
Gleissolo, Latossolo, Luvissolo, Neossolo, Planossolo, Plintossolo e Vertissolo. Estes solos
pertencem as classes mais representativas do Nordeste, ocupando cerca de 97,5% da regiao
(Souza; Leite; Medeiros, 2021). A classificacdo pedologica dos perfis até o 4° nivel categorico
(subgrupo), e a identificacdo dos pontos de coleta estao disponiveis no Apéndice A.

As amostras de solos avaliadas neste estudo fazem parte do Levantamento de
reconhecimento de média intensidade dos solos do Estado do Ceara, publicado em 2024, e
compdem a area 7 do Levantamento. Os materiais de solo foram adquiridos no banco de
dados do Laboratorio de Analises de Solos, Aguas, Tecidos e Adubos, que fica localizado no
Departamento de Ciéncia do Solo da Universidade Federal do Ceard (UFC). As informagdes
referentes a coleta das amostras e os resultados das analises de quimica umida foram obtidas

diretamente desse banco de dados.
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4.2.2 Andlises convencionais de quimica umida

As avaliagdes do solo pelo método convencional foram realizadas no Laboratorio
de Analises de Solos, Aguas, Tecidos e Adubos, pela propria equipe técnica do laboratério.
Para iniciar as analises do solo foi realizado a obtencao da terra fina seca ao ar (TFSA), tendo
sido as amostras de solo dispostas na sombra e ao ar para secagem, depois moidas e tamisadas
em peneira com malha de abertura de 2 mm. A partir das amostras de TFSA foram efetuadas
as avaliagdes convencionais e de espectroscopia de reflectancia.

As andlises de quimica imida foram realizadas segundo a metodologia do Manual
de Métodos de Andlise de Solo da Embrapa (Teixeira et al., 2017). Como andlise fisica foi
avaliada a granulometria pelo método da pipeta, que ¢ uma técnica de determinagdo das
particulas primarias do solo a partir da sedimentagao dos sélidos.

Como atributos quimicos foram avaliados: nitrogénio total pela técnica de
oxidacao com acido sulfurico; o fosforo disponivel, potassio e sodio trocaveis foram extraidos
com Mehlich I; calcio, magnésio e aluminio trocaveis foram extraidos com solucdo de KCl;
carbono organico foi determinado por combustdo umida proposta por Walkley & Black; a
condutividade elétrica (CE) foi avaliada na pasta de saturacao do solo; o pH (H,O — 1:2,5) foi
determinado em agua, com relagdo solo-dgua de 1:2,5; a soma de bases (SB) foi calculada
pela soma de Ca, Mg+2, K" e Na'; a capacidade de troca catiénica (T) foi obtida pela soma
de S, H e AI’"; a saturacio de bases (V) foi a partir dos valores de S e de T; e a percentagem

de saturagdo por sodio (PST) foi calculada a partir dos valores de Na" e de T.

4.2.3 Anadlise espectral

A andlise de espectroscopia de reflectancia foi conduzida pela equipe desse
estudo, sendo que as avaliagdes na faixa vis-NIR-SWIR foram executadas no Laboratorio de
Geoprocessamento do Departamento de Engenharia Agricola, enquanto as andlises na faixa
MIR ocorreram no Laboratério de Quimica do Departamento de Ciéncia do Solo. Ambos os
laboratorios ficam localizado na UFC.

Para a andlise espectral do solo, as amostras de terra fina seca ao ar foram
submetidas a secagem em estufa com circulacao forcada de ar, a uma temperatura de 45 °C
durante o periodo de 24 horas, conforme metodologia descrita por Dematté et al. (2014). Essa
etapa de secagem visa homogeneizar os efeitos da umidade residual do solo e reduzir a

interferéncia da agua no espectro de reflectancia.
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Na obten¢do dos espectros na faixa vis-NIR-SWIR, as amostras secas em estufa
foram acondicionadas em recipientes de polipropileno preto medindo 5 cm de diametro e 1,5
cm de altura (Figura 48a). As leituras espectrais de reflectancia foram realizadas com uma
sonda de contato (Hi-Brite Contact Probe) acoplada a um espectrorradidometro FieldSpec Pro
FR 3 (Analytical Spectral Devices, Boulder, Colorado, USA), que realiza leitura na faixa do
visivel ao infravermelho de ondas curtas (350 — 2500 nm) e possui resolucdo espectral de 3

nm e 10 nm reamostrados para 1 nm e um campo de visdo de 25° (Figura 48b).

Figura 48 — a) Amostras de solo preparadas para leitura espectral b) Equipamento de
aquisi¢ao dos dados espectrais vis-NIR-SWIR

Fonte: elaborada pela autora.

A calibragdo do equipamento foi realizada com uma placa branca Spectralon, que
¢ considerada como padrdo de referéncia com 100% de reflectincia. A partir da calibra¢do do
sensor foi realizado o célculo do fator de reflectancia bidirecional (FRB), que ¢ obtido pela
razao entre a radiancia refletida pela amostra de solo e a radiancia refletida pela placa de
referéncia. A calibragdo foi feita a cada 20 minutos com uma nova leitura da placa padrio.
Foram realizadas trés leituras espectrais na superficie da amostra, sendo a amostra rotacionada
aproximadamente 120° entre cada leitura para obter uma boa representatividade. O valor final
de reflectincia de cada amostra foi obtido com a média aritmética das trés leituras realizadas.

Para a obten¢@o dos espectros na faixa de infravermelho médio foi realizado uma
etapa adicional no preparo das amostras, a fim de obter particulas mais finas. Para isso, o solo
foi triturado em almofariz de agata, sendo posteriormente as amostras acondicionadas em
tubos eppendorf e postas para secar em estufa. A leitura no MIR foi realizada usando o
infravermelho com transformada de Fourier FTIR Cary 630 (Agilent Technologies) equipado
com moédulo de amostragem de reflectancia difusa (DRIFTS), com leituras espectrais na faixa

de 2500 a 15000 nm (4000 a 650 cm™) e resolucdo espectral <2 cm’ (Figura 49).
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Figura 49 - Equipamento para leitura espectral na faixa MIR
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Fonte: elaborada pela autora.

Em cada leitura espectral foi utilizado cerca 1 cm® de solo, o qual foi disposto em
suporte proprio do acessorio DRIFTS e inserido no equipamento. A calibragdo do sensor foi
realizada antes de cada nova leitura do solo. A placa de referéncia usada na calibracdo esta
posicionada na primeira posi¢ao do suporte e consiste de um espelho dourado de reflectancia
difusa que auxilia na remog¢do da radia¢do de background do espectro As amostras de solo
foram lidas em triplicata para obter os dados espectrais na faixa MIR, sendo o valor final de

reflectancia de cada amostra obtida pela média simples das trés repeti¢des.
4.2.4 Processamento dos dados espectrais

Os dados espectrais de reflectdncia obtidos nas faixas vis-NIR-SWIR e MIR
foram submetidos a técnicas de pré-processamentos com o objetivo de remover ruidos e
aperfeicoar a interpretacdo das principais feigdes, bem como melhorar a estabilidade da
regressdo. Para o pré-processamento dos dados espectrais brutos de reflectancia foram
empregadas as técnicas de conversdo dos valores para absorbancia (A) e de suavizagdo
Savitzky-Golay (SG).

A transformacdo logaritmica de reflectancia (R) para absorbancia (A) preserva
uma correlagdo linear entre a radiancia e as concentragdes dos componentes do solo. A técnica

de filtragem (suavizagdo) Savitzky-Golay ¢ amplamente usada visando a reducdo do ruido e a
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diferenciagdo do sinal (Rizzo et al., 2021). Ressalta-se que aplicagdo dessa filtragem SG

resulta na perda das janelas iniciais e finais da faixa espectral analisada.

4.2.5 Estatistica descritiva

A andlise dos dados produzidos com a metodologia convencional e espectral, bem
como o pré-processamento dos dados espectrais foi executada no software R versdo
2024.12.0.467 (R Core Team, 2024). A caracterizacdo dos 17 atributos fisico-quimicos
estudados foi realizada pela andlise de estatistica descritiva nos dados, tendo sido avaliada a
média, mediana, minimo, maximo, desvio padrdo, primeiro e terceiro quartil, assimetria e
curtose.

Foi avaliada, ainda, a normalidade dos atributos por meio do teste de hipotese
Shapiro-Wilk a 5%. Apo6s a realizagdo do teste, diferentes transformagdes foram aplicadas nos
atributos fisico-quimicos avaliados como ndo normais. As transformagdes logaritmo de base
10, poténcia ao quadrado e raiz quadrada foram empregadas visando obter valores

normalmente distribuidos.

4.2.6 Modelagem preditiva — Calibragdo e Validacdo

Os modelos preditivos dos atributos fisico-quimicos foram desenvolvidos com os
espectros brutos (vis-NIR-SWIR e MIR) e com os espectros processados pela conversao para
absorbancia e pela suavizacdo Savitzky-Golay (Figura 50). Para a geracdo dos modelos de
quantificacdo foi usado um algoritmo de regressdo linear multivariada - Regressdo por
Minimos Quadrados Parciais (PLSR), e algoritmos de aprendizado de méaquina - Maquina de
Vetor Suporte com fungdes Kernel lineares e radiais (SVM-Linear e SVM-Radial) e
Algoritmo Cubista (CA).
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Figura 50 - Fluxograma metodologico da predicao de atributos fisico-quimicos do solo
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Fonte: elaborada pela autora.

O algoritmo PLSR decompde as variaveis dependentes e as independentes em
scores, € pressupoe que ha uma relagdo linear entre os dados avaliados (Meneses et al., 2019).
O método SVM ¢ empregado em tarefas lineares e ndo lineares, de modo que quando os
dados ndo sdo linearmente separaveis sdo usadas fun¢des kernel para transforma-los em um
espago de maior dimensdo e permitir a separacao linear. A fungdo mais adequada comumente
¢ escolhida experimentalmente (Cosma ef al., 2017). O algoritmo CA ¢ baseado em arvores de
regressdo e aprendizado em conjunto, sendo reconhecido por realizar predigdes com alta
precisdo e promover a interpretagdo conveniente do modelo (Coblinski et al., 2020).

O conjunto de dados dos solos foi dividido uma parte para calibragdo e outra para
teste com dados inéditos. Para tanto, foi realizada uma selecao aleatoria das amostras de solo,
tendo sido 70% (80 amostras) selecionadas para calibracdo e 30% (34 amostras) para o teste
dos modelos em uma validagdo independente. Durante a etapa de calibracdo foi feito uma
validagdo dos modelos por meio da validagdo cruzada k-fold 10 vezes.

O desempenho da precisdo dos modelos de predi¢do com os diferentes espectros e
algoritmos testados foi avaliado usando as seguintes métricas: coeficiente de determinacao
(R?) (Equagao 1), raiz do erro quadratico médio (RMSE) (Equagao 2), razdo de desempenho
do desvio (RPD) (Equagdo 3) e a razdo de desempenho para intervalo interquartil (RPIQ)

(Equacdo 4). Antes de calcular esses indices, os atributos modelados foram transformados de
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volta para suas unidades originais.

2 _ Lo 1G-9)°

R= = -
EF: 1(y—§)*

(1)

Em que: Y é o valor predito; Y representa o valor observado; Y é a média dos

valores observados e n ¢ igual ao numero de amostras.
RMSE = [¥n-m i’ -yi) )
- "ql i=1 n—m ( )

Em que: n € igual ao nimero de amostras; m ¢ o nimero de amostras usadas para

predicdo; yi -yi sdo os valores preditos e observados, respectivamente.

— o
RFD = RMSE 3)

Em que: o ¢ o desvio padrao para os valores observados.

RPIQ = —2 4)

REMSE

Em que: /Q ¢ o intervalo interquartil representado pela diferenca entre o valor
referente ao 3° quartil e o valor referente ao 1° quartil da distribuicao dos dados observados.

Os modelos de predi¢ao foram classificados em categorias com base nos valores
das métricas. A categorizagdo pela R? foi realizada conforme critérios propostos por Terra;
Dematté; Rossel (2015), sendo: R* > 0,75 - modelos bem ajustados para prever com precisao
os atributos; 0,50 < R? < 0,75 - modelos justos, mas que podem ser melhorados; e R* < 0,50 -
modelos ndo confidveis e sem capacidade de predicdo. Para a métrica de RPD, a classificagdo
dos modelos seguiu Chang et al. (2001), sendo: RPD > 2,00: modelo excelente; 1,40 < RPD <
2,00: modelo que necessita de ajustes; ¢ RPD < 1,40: modelo nao confiavel.

Adicionalmente, a qualidade dos modelos foi avaliada com base nos valores de
RPIQ. Essa métrica ¢ amplamente empregada para analisar o desempenho de modelos, sendo
considerada mais adequada que o RPD para avaliar a qualidade da predi¢do (Bellon-Maurel et

al., 2010), visto que ¢ comum a nao normalidade dos dados do solo mesmo apds sua



108

transformagdo, o que torna mais eficaz utilizar a diferenca interquartil como medida de
dispersdao do que o desvio. A classificagdo dos modelos com base em RPIQ foi feita segundo
Coblinski et al. (2020): RPIQ > 2,00: modelos excelentes; 1,40 < RPIQ < 2,0: modelos

razoaveis; RPIQ < 1,4: modelos ndo confidveis.

4.3 Resultados e Discussao

A seguir serdo apresentados os resultados da estatistica descritiva aplicada aos
dados das analises tradicionais e a modelagem preditiva realizada nas faixas vis-NIR-SWIR e

MIR.

4.3.1 Estatistica descritiva

A Tabela 4 apresenta os resultados da estatistica descritiva dos atributos fisico-
quimicos dos solos, considerando os dados antes de aplicar normalizagdo. Ao avaliar a
normalidade dos dados por meio do teste de Shapiro-Wilk a 5%, verificou-se que apenas o
atributo pH apresentou distribuicdo normal, ndo demandando qualquer transformacao. Para os
atributos silte, argila, C, N, P, K, Mg, Na, Al, V e PST aplicou-se a transformago por raiz
quadrada, ao passo que a areia foi transformada pela poténcia ao quadrado. Nos atributos Ca,
SB, CTC e CE utilizou-se a transformacgao logaritmo de base 10. Apesar das transformagdes

aplicadas, alguns atributos permaneceram com distribuicao ndo normal.
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Tabela 4 — Estatistica descritiva para os atributos dos 114 solos avaliados sem normalizagdo

Atributo Média Mediana  DP Min. Max. As Cu 1°Q. 3°Q. S-W (p-
value)

Areia (g

ke 71035 73800 19724 10000 99500 090 072 57500 84825 433E-05

Silte (8 14918 123.00 121,04  2.00

ket , , , , 552,00 1,19 1,44 54,00 208,50 3,15E-07

Afgl{?)(g 140,63 112,00 11425 3,00 430,00 088 -0,04 4875 191,00 1,10E-06

N(?)kg' 0,58 0,36 0,82 000 496 328 1340 0,10 0,65 233E-15

P (mg

koot 8,26 1,90 1682 0,00 9460 3,76 1487 1,0 738 3,22E-17

K

(cmolc 0,12 0.11 007 0,01 040 1,04 236 0,07 0,16 1,02E-05

kg-")

Ca

(cmole 2,32 0,89 232 0,10 2087 280 7,76 030 1,71  9,59E-17

kg-")

Mg

(cmole 1,78 0,48 1,78 0,00 2601 425 2135 018 142 221E-I8

kg-")

C(%’)kg' 4,09 2,70 425 001 2676 308 1201 1,80 534 2,87E-14

Al

(cmole 0,56 0,17 0,77 000 345 1,76 2,79 0,00 0,90 856E-13

kg-")

Na

(cmolc 0,63 0,07 1.86 0,00 1575 5,64 3993 0,04 021 3,68E-20

kg-')

SB

(cmole 4,83 1,64 760 032 3457 234 494 066 3,73 6,59E-16

kg-")

Tl((‘gﬂ‘))lc 6,09 310 773 082 348 230 467 193 538 1,94E-15

V(%) 62,04 650 2673 13,00 100,00 -021 -127 380 88,75 1,93E-05

PST (%) 7,40 2,75 1336 0,00 6840 3,02 868 130 640 1,92E-17

Cr];:l_(f)is 0,65 0,14 1,68 001 10,15 426 1915 008 028 7,34E-20

pHH,0 5,56 5,50 084 390 820 000 011 610 042 0,11

DP: desvio padrdo; Min: minimo; Max: maximo; As: assimetria; Cu: curtose; 1° Q: primeiro quartil; 3° Q: terceiro quartil; S-
W: Teste de normalidade por Shapiro-Wilk.

Fonte: elaborada pela autora.

Os coeficientes de assimetria e curtose, de natureza adimensional, corroboraram

os resultados do teste de Shapiro-Wilk. Esses coeficientes sdo frequentemente usados como

método alternativo para verificar a distribuicdo dos dados e sua normalidade, sendo

considerados normais os dados que possuem valor de assimetria proximo a 0 e curtose em

torno de 3 (Groeneveld; Meeden, 1984; Santos; Ferreira, 2003). A auséncia de normalidade ¢
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uma caracteristica comum em variaveis pedoldgicas, visto que a heterogeneidade natural dos
solos ¢ alta com uma ampla variacdo na distribui¢do dos atributos, ocasionando a falta de
normalidade e uma distribui¢do muito assimétrica (Bellon-Maurel ez al., 2010).

Com relacdo aos valores médios dos atributos avaliados, observou-se quanto a
fracdo granulométrica, que houve predominadncia da fracdo areia. Este resultado esta
associado a maior representatividade no conjunto de dados avaliados (Apéndice A) da classe
de Neossolos que apresentam textura arenosa, € da classe de Argissolos, que possuem como
caracteristica intrinseca a presenga de horizonte A com maior teor de areia em relacdo aos
horizontes subsuperficiais (Santos et al., 2025).

No que se refere aos atributos quimicos, os solos apresentaram pH
moderadamente acido. Os valores médios indicaram elevada capacidade de troca catidnica
(CTC) e teores altos de magnésio (Mg), concentragdes intermedidrias de fosforo (P), potassio
(K), célcio (Ca), aluminio (Al), saturacdo por bases (V) e soma de bases (SB), além de valores
baixos de nitrogénio (N) e carbono organico (CO). Embora a lixiviagdo de bases seja pouco
expressiva nas condi¢cdes do Semidrido, a SB ¢ muito variada devido ao material de origem
dos solos (Souza; Leite; Medeiros, 2021).

Quanto as caracteristicas de salinidade e sodicidade, os atributos porcentagem de
saturagdo por sodio (PST) e condutividade elétrica (CE) devem atender alguns critérios para a
classificacdo dos solos como salinos e/ou sédicos, sendo estes: salinos — CE >4 dS m™ e PST
< 15%; sédicos — CE <4 dS m™ e PST > 15%; e salino-sédicos — CE >4 dSm™ e PST > 15%
(FAO, 2024). Com base nos valores maximos observados para esses atributos, o conjunto de
solos avaliados enquadra-se em salino-sddico. No entanto, ao se observar os valores médios,
verifica-se que nenhum dos critérios ¢ atendido, embora a PST exiba valores elevados.

Esses resultados sdo justificados pela ocorréncia de alguns perfis de solos com
carater salino, sodico ou solddico identificados no terceiro e quarto niveis categoricos
(Apéndice A). Os valores elevados de PST evidenciam que a sodicidade constitui um dos
principais problemas de degradagdo dos solos do Nordeste, corroborando a necessidade de
monitoramento constante a fim de mitigar os prejuizos associados. A maior parte dos
prejuizos associados ao excesso de sais decorre do efeito deletério do sodio trocavel, que

promove a dispersdo de argilas e a degradacao da estrutura do solo (Vasconcelos ef al., 2013).

4.3.2 Modelagem preditiva com dados espectrais vis-NIR-SWIR

O desempenho dos modelos nas etapas de calibragdo e validacdo independente
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para a predi¢do dos atributos fisicos e quimicos dos solos, considerando os diferentes tipos de
pré-processamentos € algoritmos multivariados empregados na faixa do visivel ao
infravermelho de ondas curtas, estdo disponiveis nos Apéndices C e D.

O melhor modelo de predi¢do para cada atributo avaliado foi determinado com
base nos maiores valores de R%, RPD ¢ RPIQ e menores valores de RMSE no conjunto de
validagdo com dados inéditos, e pode ser verificado nas figuras a seguir. Nas figuras dos
graficos de dispersdo, os pontos intimamente alinhados com a linha 1:1 (pontilhada)
evidenciam a concordancia entre os resultados de predigdes espectrais e as observagoes
laboratoriais.

Para a predicdo dos atributos fisicos (Figura 51), os modelos de areia e argila
apresentaram a melhor precisdo de predi¢do quando modelados com o algoritmo Cubist, a
partir de espectros convertidos para absorbancia. Em contrapartida, a modelagem do silte
alcancou o melhor desempenho utilizando o algoritmo PLSR associado aos dados espectrais

suavizados com o filtro Savitzky-Golay (SG).

Figura 51 — Desempenho dos melhores modelos de validacdo para areia (A), silte (B) e argila
(C) na faixa vis-NIR-SWIR
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Ao analisar os modelos de validagdo dos atributos fisicos com dados inéditos,
constatou-se que a aplicagdo de técnicas de pré-processamento aos dados brutos foi eficaz em
melhorar o desempenho preditivo desses atributos. Verificou-se, ainda, que conforme a
categorizacdo baseada nas meétricas de avaliagdo, os modelos para areia e argila foram
classificados como excelentes (RPD e RPIQ > 2,00). Em contrapartida, a predicao do silte foi
classificada como razoavel necessitando de ajustes no modelo (1,40 < RPD e RPIQ <2,00), o
que foi corroborado pelo valor do coeficiente de determinagao (0,50 <R? <0,75).

Os achados deste estudo estdo em consonancia com resultados de Coblinski et al.
(2020) e Costa et al. (2022), os quais ao realizarem a predicdo da textura do solo com o
algoritmo Cubist, também observaram maior acuracia na predicdo de areia e argila, em
compara¢do ao modelo de silte. Coblinski et al. (2020) atribuiram o desempenho inferior da
predicao do silte ao fato de sua determinacgao ser indireta na metodologia convencional, sendo
obtido por meio do célculo de diferenga entre os teores de argila e areia.

Os indices de desempenho (R?, RPD e RPIQ) obtidos neste estudo para areia e
argila foram ligeiramente inferiores aos reportados por Terra; Dematté; Rossel (2015) e por
Dematté et al. (2019). No entanto, apesar das diferencas nos tipos de solos e nas sequéncias
metodoldgicas empregadas, os modelos aqui desenvolvidos foram classificados como
excelentes, apresentando desempenho compativel com os indices alcangados por esses
autores. Esse fato refor¢a que, mesmo diante de condi¢cdes pedologicas e metodologicas
distintas, ¢ viavel obter predi¢cdes espectrais confiaveis dos atributos fisicos do solo.

Com relagao a predi¢ao dos atributos quimicos dos solos avaliados, os melhores
desempenhos preditivos para os elementos minerais carbono organico e sédio, foram
observados com o uso dos dados brutos de reflectdncia combinados com o algoritmo Cubist e
a regressdo PLSR, respectivamente. Em contraste, a predicdo do aluminio apresentou maior
acuracia quando se utilizou o algoritmo maquina de vetor suporte (SVM) com fungao Kernel
radial, aliado aos dados espectrais suavizados por SG. A predicdo percentagem de sodio
trocavel, por sua vez, alcancou o melhor desempenho com o uso do algoritmo Cubist

associado aos dados suavizados por SG (Figura 52).
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Figura 52 — Desempenho dos melhores modelos de validagdo para carbono organico (A),
aluminio (B), s6dio (C) e percentagem de sddio trocavel (D) na faixa vis-NIR-SWIR
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A analise da qualidade dos modelos, com base nas métricas R? e RPD, revelou que
a predicao desses atributos quimicos apresentou desempenho razoavel, demandando realizar
ajustes nos modelos. Em contraste, ao se avaliar o RPIQ, observou-se uma variagdo
significativa, visto que o modelo de CO passou a ser classificado como excelente € os de Na e
PST mostraram-se ndo confiaveis (RPIQ < 1,4). Ja a performance da predi¢ao de Al manteve-
se dentro da faixa considerada como razoavel.

O modelo obtido para o carbono organico superou os desempenhos reportados por
Terra; Dematté; Rossel (2015) e por Taghdis; Farpoor; Mahmoodabadi (2022) na faixa vis-
NIR-SWIR, no entanto, esta alinhado aos resultados de Santos et al. (2020) e Ribeiro et al.
(2021), com valor de R? superior a 0,70. Vale ressaltar que no trabalhado de Ribeiro et al.
(2021) foram avaliados apenas duas classes pedologicas, enquanto o presente estudo abrange
solos de nove classes oriundos da mesma regido geografica, indicando que a maior
variabilidade pedologica ndo prejudicou a precisao da modelagem espectral do CO.

Para a predicdo do aluminio, o modelo desenvolvido superou o desempenho
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reportado por Beniaich et al. (2025), que também empregaram o algoritmo SVM com fung¢ao
Kernel radial na faixa vis-NIR-SWIR. Além disso, o indice de R? obtido neste estudo foi mais
elevado que o resultado encontrado por Terra; Dematté; Rossel (2015), contudo, estes autores
alcangcaram maior valor do indice RPIQ, indicando maior precisao do modelo.

O modelo desenvolvido para o Na apresentou desempenho semelhante ao trabalho
de O’Rourke et al. (2016), com valor de R? considerado razoavel, porém com RPIQ nao
confiavel. Ainda assim, o modelo obtido superou os resultados de Zhao et al. (2021) e de
Salazar ef al. (2023), que utilizaram espectros brutos na faixa de 1350 a 2500 nm. De modo
similar, o modelo de PST obtido superou o desempenho reportado por Lotfollahi et al. (2023),
que realizaram a predi¢do com o algoritmo Cubist na faixa vis-NIR-SWIR, sendo os valores
alcancados para RPIQ baixos, em concordincia com os resultados deste estudo.

Ressalta-se que hd a escassez de trabalhos na literatura voltados a estimativa
espectral de sodio e da percentagem de sodio trocavel, quando comparado a modelagem de
outros atributos quimicos. Essa limitagcdo pode estar relacionada ao fato desses atributos
serem rotineiramente analisados apenas em solos da regido Semiarida, onde a sodicidade ¢ um
fator critico de degradacao. Nesse sentido, fica evidente a relevancia cientifica do presente
estudo, ao contribuir com conhecimento cientifico para a regiao.

Para a predicdo dos macronutrientes, os melhores modelos de nitrogénio (N) e
magnésio (Mg), foram obtidos, respectivamente, com os dados brutos de reflectancia
associado com o algoritmo Cubist e a regressdo PLSR. Para o fosforo (P), potéssio (K) e
calcio (Ca), os melhores desempenhos ocorreram com o algoritmo PLSR, sendo a predigao de
fosforo realizada com os espectros suavizados por SG e os demais nutrientes modelados com

os dados convertidos para valores de absorbancia (Figura 53).
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Figura 53 — Desempenho dos melhores modelos de validacao para nitrogénio (A), fosforo (B),
potassio (C), calcio (D) e magnésio (E) na faixa vis-NIR-SWIR
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Fonte: elaborada pela autora.

A avaliacdo da qualidade dos modelos dos macronutrientes variou em fungdo das
métricas consideradas. Pela métrica de RPIQ, apenas a predicdo do K apresentou desempenho
razoavel (1,40 < RPIQ < 2,00), enquanto os demais elementos foram classificados como nao
confiaveis (RPIQ < 1,40). Com base nos valores de RPD, a modelagem de P foi classificada
como excelente (RPD > 2,0), com os demais nutrientes apresentando uma predi¢do razoavel
(1,4 <RPD < 2,0). Pela métrica de R?, o modelo de Ca teve desempenho insatisfatorio (R? <
0,50), enquanto a predi¢ao dos demais nutrientes foi razoavel (0,50 <R?<0,75).

O resultado da modelagem de nitrogénio corroborou os achados de Clingensmith;
Grunwald (2022), que também identificaram que o algoritmo Cubist foi o mais adequado para
a predicao desse nutriente. Entretanto, no que se refere ao desempenho da predigdo, o modelo
obtido foi inferior aos reportados por Santos et al. (2020), Asrat et al. (2024) e Mondal et al.
(2025). Essas diferengas podem ser atribuidas a variagdes nos tipos de solos estudados e nas
metodologias empregadas, inclusive para a profundidade de amostragem.

Para as predigdes de potassio, calcio e magnésio, os desempenhos obtidos foram
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inferiores aos encontrados por Tavares et al. (2021). Para o foésforo, potassio, célcio e
magnésio, os modelos desenvolvidos superaram os resultados reportados por Terra; Dematté;
Rossel (2015) e Yu et al. (2023) em termos de R?, porém com valores de RPIQ inferiores.
Essa oposi¢do entre os indices de avaliagdo evidencia que, embora os modelos preditivos
estejam capturando bem a variabilidade dos dados, a precisdo da predicdo ¢ limitada e
deficiente.

Para a predi¢do dos atributos quimicos soma de bases (SB), saturagdo por bases
(V) e pH, os melhores modelos foram obtidos com o uso do algoritmo Cubist em combinagao
com os dados suavizados por SG. Em relacdo a capacidade de troca cationica (CTC) e a
condutividade elétrica (CE), os modelos preditivos mais eficazes foram gerados,
respectivamente, empregando a regressdo PLSR aplicada aos dados brutos de reflectiancia e

aos dados suavizados por SG (Figura 54).

Figura 54 — Desempenho dos melhores modelos de validagdo para soma de bases (A),
capacidade de troca de cations (B), saturagdo por bases (C), condutividade elétrica (D) e pH
(E) na faixa vis-NIR-SWIR
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A andlise do desempenho dos modelos preditivos, com base nos valores do indice
RPIQ, revelou que a predicdo de V obteve uma acurdcia excelente, enquanto o pH foi
classificado como razoavel. Ja os modelos de SB, CTC e CE foram classificados como nao
confidveis. Quando avaliados com as métricas RPD e R?, todos os modelos alcancaram
desempenho razoavel, exceto a predicdo de pH, que se mostrou ndo confidvel apresentando R?
inferior a 0,50.

Os modelos de soma de bases e saturacdo por bases superaram os resultados
preditivos de Beniaich et al. (2025) na faixa vis-NIR-SWIR, no entanto, esses autores
alcangaram um maior valor de RPIQ na predi¢ao de SB. Por outro lado, o modelo obtido para
SB esta em concordancia com a modelagem realizada por Dematté et al. (2019) para o Ceara,
porém, com um erro quadratico médio inferior. O modelo desenvolvido para V obteve
desempenho superior ao reportado por Di Raimo et al. (2022), contudo, foi inferior as
predicoes realizadas por Tavares ef al. (2021) e Wei et al. (2022), considerando a métrica R2.

Para a predigdo da capacidade de troca catidnica, o desempenho alcangado
superou o resultado de Tavares et al. (2021), mas foi inferior as modelagens de Terra;
Dematté; Rossel (2015) e Taghdis; Farpoor; Mahmoodabadi (2022). Embora o modelo obtido
tenha apresentado R? superior a predi¢ado realizada por Di Raimo et al. (2022), o indice RPIQ
obtido ficou abaixo do valor reportado por esses autores.

O modelo desenvolvido para a condutividade elétrica apresentou desempenho
inferior ao trabalho de Sun ef al. (2024). No entanto, corroborando os resultados alcangados
por esses autores, o valor de RPIQ obtido também foi significativamente menor do que as
demais métricas, sugerindo limitagdes na acuracia preditiva desse atributo. Por outro lado, em
termos das métricas R? e RPD, o modelo apresentou desempenho superior ao relatado por
Lotfollahi et al. (2023) na predicao de CE empregando o algoritmo PLSR.

Em relagdo a predigdo do pH, o modelo obtido foi inferior aos resultados
encontrados por Clingensmith; Grunwald (2022), Di Raimo et al. (2022) e Sun et al. (2024).
Embora o modelo desenvolvido tenha apresentado um valor de R? consideravelmente menor
do que o reportado por Dematté et al. (2019) na predicdo em solos do Ceard, a métrica obtida
de RPIQ foi superior, indicando que, apesar da baixa variancia explicada, a distribuicdo dos
residuos quanto a variabilidade dos dados permitiu obter uma predi¢ao de precisao razoavel.

A analise das métricas obtidas na faixa vis-NIR-SWIR revelou uma relagdo
inversa entre a raiz do erro quadratico médio (RMSE) e o coeficiente de determinagdo (R?), de
modo que quanto maior a variancia explicada, menor o erro. De forma geral, os valores de R?

seguiram as variagdes do indice de razdo da performance do desvio (RPD), corroborando os
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achados de Shen et al. (2022). Contudo, o indice da razdo de desempenho para intervalo
interquartil (RPIQ) ndo seguiu essa tendéncia, exibindo comportamento distinto na predi¢ao
de Na, P, Ca, Mg, SB, CTC e CE. A ocorréncia de divergéncia nas métricas, observada em
alguns modelos, indica que a predicdo apresenta precisdo limitada.

As técnicas de pré-processamento espectral utilizadas foram eficientes em
melhorar a estabilidade da regressdo da maioria dos atributos dos solos, ndo tendo promovido
incrementos na predi¢do dos atributos CO, N, Mg, Na e CTC (Apéndices C e D). A conversao
dos valores espectrais para absorbancia melhorou a precisdo da modelagem de areia, argila, K
e Ca, ao passo que a suavizacdo com o filtro Savitzky-Golay foi eficiente em melhorar a
predi¢do de silte, Al, P, PST, SB, V, pH e CE.

Corroborando esses resultados, o efeito positivo do pré-processamento sobre o
desempenho preditivo de atributos do solo ¢ relatado por diversos autores, como em Santos ef
al. (2020), Asrat et al. (2024) e Sun et al. (2024). As técnicas de pré-processamento podem
melhorar a capacidade de distingdo de caracteristicas espectrais importantes para modelagem
(Asrat et al., 2024), como a predicdo da salinidade, por exemplo, em que o tratamento
espectral destaca de modo eficiente pequenas diferengas nos dados espectrais, auxiliando no
aumento da sensibilidade da regressdo a variagdes na salinidade do solo (Sun et al., 2024).

Os algoritmos de regressdo PLSR e Cubist foram responsaveis por produzir as
melhores modelagens da maioria dos atributos avaliados na faixa vis-NIR-SWIR, enquanto o
algoritmo SVM usando a fungdo Kernel radial alcangou o melhor desempenho somente na
predicao do Al e com a funcdo linear ndo houve produg¢ao de bons modelos. De modo
semelhante, Di Raimo et al. (2022) observaram que as regressdes PLSR e Cubist alcangaram
destaque entre os métodos de modelagem testados. Por outro lado, Clingensmith; Grunwald
(2022) alcangaram os melhores resultados com os modelos cubistas, enquanto o PLSR

produziu previsodes ruins.

4.3.3 Modelagem preditiva com dados espectrais MIR

Os resultados dos modelos de calibragao e validagdo independente para a predi¢ao
dos atributos fisico-quimicos do solo, na faixa do infravermelho médio, estdo apresentados
nos Apéndices E e F. A modelagem foi conduzida a partir da aplicacdo de diferentes tipos de
pré-processamentos espectrais combinados a algoritmos multivariados. A melhor predicao de
cada atributo foi definida na valida¢ao com dados inéditos com base nos maiores valores de

R2, RPD e RPIQ, bem como os menores valores de RMSE. O desempenho dos melhores
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modelos pode ser visualizado nas figuras com graficos de dispersao dispostas a seguir.

Para os atributos fisicos (Figura 55), os melhores modelos para areia e silte foram
obtidos, respectivamente, com os algoritmos Cubist ¢ PLSR, combinados com dados brutos
de reflectancia. Em contrapartida, a predi¢ao de argila apresentou o melhor desempenho com
o algoritmo SVM com funcao Kernel radial, associado aos dados espectrais suavizados por

meio do filtro Savitzky-Golay (SG).

Figura 55 — Desempenho dos melhores modelos de validagao para areia (A), silte (B) e argila
(C) na faixa MIR
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Fonte: elaborada pela autora.

A avaliagdo dos modelos de validacdo dos atributos fisicos revelou desempenho
excelente para as predigdes de areia, silte e argila para todas as métricas avaliadas, exibindo
R2> 0,75, RPD e RPIQ > 2,0. A precisao preditiva desses modelos foi maior na faixa MIR em
comparagdo com aquela obtida com o espectro Vis-NIR-SWIR, resultando também em uma
diminuicdo expressiva do erro.

A performance obtida para os atributos fisicos superou os resultados reportados

por Wijewardane et al. (2018) e Di Raimo et al. (2022), estando em consonancia com o0s
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achados de Terra; Dematté; Rossel (2015) e Mendes et al. (2022) para a predi¢do de areia e
argila na faixa MIR. De modo semelhante, os modelos desenvolvidos para areia e argila
apresentaram indices compativeis aos reportados por Ng et al. (2022) e Beniaich et al. (2025),
que foram classificados como excelentes, no entanto, a modelagem de silte alcangou
desempenho superior ao obtido por esses autores.

No que se referem aos atributos quimicos do solo, os melhores resultados para a
predicdo do carbono organico e sodio foram alcangados por meio do algoritmo Cubist,
aplicado aos dados espectrais convertidos para absorbancia. Por sua vez, os melhores modelos
preditivos para o aluminio e percentagem de sodio trocavel foram obtidos, respectivamente,

com os dados suavizados com o filtro SG associado aos algoritmos PLSR ¢ SVM com fun¢ao

Kernel linear (Figura 56).

Figura 56 — Desempenho dos melhores modelos de validacdo para carbono organico (A),
aluminio (B) sodio (C) e percentagem de sddio trocavel (D) na faixa MIR
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Fonte: elaborada pela autora.

A analise da qualidade dos modelos, considerando as métricas R ¢ RPD, indicou

acuracia excelente para as predigdes de CO, enquanto as modelagens de Al e Na apresentaram
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desempenho razoavel (0,50 < R? < 0,75; 1,4 < RPD < 2,0), sugerindo a necessidade de
aprimoramento. Em contraste, ao se utilizar o indice RPIQ como critério de avaliagdo,
observou-se uma mudanga na classificacdo, de modo que a predicdo de Na passou a
apresentar desempenho insatisfatorio (RPIQ < 1,4), Al passou a ter acurdcia excelente,
enquanto CO mantiver desempenho excelente (RPIQ > 2,0). J4 a predicdo de PST, obteve
resultado insatisfatorio para todas as métricas avaliadas.

A modelagem de carbono organico apresentou desempenho inferior ao reportado
por Wijewardane et al. (2018), porém, superou o modelo obtido por Mendes et al. (2022). Por
outro lado, o modelo desenvolvido foi consistente com os resultados encontrados por Santos
et al. (2020), que modelaram o CO a partir de espectros de absorbancia de sete classes de
solos do Nordeste brasileiro. Esses achados sugerem que o uso de bancos de dados regionais
com uma ampla diversidade pedoldgica ndo compromete a precisao preditiva de CO.

Embora os modelos obtidos para carbono organico e aluminio tenham
apresentando valores inferiores aos reportados por Ng et al. (2022), o desempenho das
predi¢des mantiveram-se com nivel de acuracia excelente. Além disso, as predigdes de CO e
Al estao em concordancia com os resultados encontrados por Terra; Dematté; Rossel (2015), e
superaram os resultados alcangados por Beniaich et al. (2025).

Para o Na, o desempenho do modelo obtido foi inferior ao relatado por Ng et al.
(2022), porém, superou os resultados encontrados por Rossel et al. (2008) e Janik; Forrester;
Rawson (2009). De modo analogo, a predi¢ao realizada para a PST apresentou desempenho
superior ao alcangado por Lotfollahi et al. (2023), ao utilizarem o algoritmo Cubist na faixa
MIR, sendo o melhor desempenho relatado por esses autores para o modelo baseado na
distancia de Mahalanobis. No entanto, independentemente do modelo empregado, os valores
de RPIQ foram muito baixos, assim como os obtidos neste estudo, o que indica que a precisao
da predicao para a PST necessita de aprimoramento.

Em relagdo aos macronutrientes (Figura 57), os melhores desempenhos preditivos
para nitrogénio e potassio foram obtidos, respectivamente, com a regressao PLSR aplicada
aos espectros suavizados pelo filtro SG e com os dados espectrais em absorbancia. A predigdo
do foésforo foi mais eficaz com o algoritmo SVM de funcdo Kernel linear, associado a
espectros suavizados com o filtro SG. Para célcio e magnésio, o melhor ajuste foi obtido com
o algoritmo SVM de funcdo Kernel radial, utilizando dados em absorbancia e os espectros

suavizados com o filtro SG
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Figura 57 — Desempenho dos melhores modelos de validacao para nitrogénio (A), fosforo (B),
potassio (C), calcio (D) e magnésio (E) na faixa MIR
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Fonte: elaborada pela autora.

O desempenho dos modelos para os macronutrientes variou conforme a métrica
utilizada. Pela métrica de RPIQ, N e K apresentaram desempenho razoavel (1,40 < RPIQ <
2,00), enquanto os modelos dos demais nutrientes foram classificados como de baixa acuracia
preditiva (RPIQ < 1,40). Por outro lado, pelas métricas de R? e RPD, a predigao de P foi
considerada excelente (R? > 0,75 e RPD > 2,0). Os demais elementos, com excecao de Ca que
teve desempenho inferior para todas as métricas, foram considerados razoaveis (0,50 < R? <
0,75; 1,4 <RPD <2,0).

A predi¢ao de N apresentou desempenho inferior aos modelos de Madari et al.
(2006) e Wijewardane et al. (2018), porém foi consistente com os resultados de Santos et al.
(2020), que utilizaram para a predicdo o mesmo algoritmo e pré-processamento deste estudo.
Do mesmo modo, a qualidade dos modelos de N e Ca foram inferiores aos obtidos por Garrett
et al. (2022). Embora a predicdo de Ca ndo tenha alcancado desempenho confiavel, o melhor
resultado foi obtido na modelagem com SVM de funcdo Kernel radial, corroborando o

potencial desse algoritmo, também evidenciado por Beniaich et al. (2025).
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O desempenho dos modelos desenvolvidos para fésforo e potassio superaram os
resultados de Wijewardane ef al. (2018) em todas as métricas avaliadas. As modelagens de
fosforo e magnésio também apresentaram R? superiores aos valores reportados por Terra;
Dematté; Rossel (2015), embora os valores de RPIQ tenham sido inferiores. Em
contrapartida, os modelos de potdssio e magnésio alcangaram desempenho inferior ao
registrado por Ng et al. (2022).

Para os atributos soma de bases e capacidade de troca cationica, os melhores
modelos foram obtidos com o algoritmo SVM de fun¢do Kernel linear, combinado aos dados
suavizados com o filtro SG A modelagem da saturacdo por bases apresentou o melhor
desempenho com o algoritmo Cubist aplicado aos dados brutos de reflectancia. Ja os atributos
condutividade elétrica e pH, alcancaram os melhores resultados preditivos, respectivamente,
com a regressao PLSR associada aos dados espectrais suavizados com SG, e com os espectros

convertidos em absorbancia (Figura 58).

Figura 58 — Desempenho dos melhores modelos de validacdo para soma de bases (A),
capacidade de troca de cations (B), saturagcdo por bases (C), condutividade elétrica (D) e pH
(E) na faixa MIR
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A avaliacdo dos modelos preditivos com base no indice RPIQ revelou acurécia
excelente para a predicio de V e desempenho razoivel para o modelo de pH. Em
contrapartida, os modelos de SB, CTC e CE apresentaram baixos valores desse indice, sendo
considerados pouco confiaveis. Por outro lado, quando analisadas as métricas R? e RPD, todos
os modelos atingiram desempenho razoavel, com excecdo da predi¢do de CE, cujo
desempenho foi excelente, confirmando divergéncia entre as métricas empregadas.

Os modelos desenvolvidos para SB e CTC apresentaram desempenho inferior aos
resultados de Terra; Dematté; Rossel (2015). Do mesmo modo, as modelagens de CTC, V e
pH foram inferiores as reportadas por Garrett et al. (2022), enquanto as predi¢cdes de CTC e
pH também ficaram abaixo dos resultados obtidos por Wijewardane et al. (2018) e Beniaich
et al. (2025). Ressalta-se que, embora os trabalhos citados também tenham avaliado o solo na
faixa MIR, foram adotadas metodologias distintas e avaliado diferentes classes pedologicas, o
que contribui para a variacao dos resultados apresentados.

Para a predicdo da condutividade elétrica, o desempenho obtido superou, em
termos de R?, os valores relatados por Janik; Forrester; Rawson (2009) e Ng ef al. (2022),
contudo apresentou RPIQ inferior. O modelo gerado estd alinhado com os achados de
Lotfollahi ef al. (2023) para a modelagem na faixa MIR com o algoritmo PLSR. De modo
semelhante ao observado nesse estudo, esses autores também relataram valores de RPIQ
substancialmente menores aos das métricas R? e RPD, indicando que a alta assimetria na
distribuicao dos dados de CE afetou diretamente a precisdo preditiva.

Quando a populagdo analisada no solo possui distribuicdo muito assimétrica, a
avaliacdo da capacidade dos modelos preditivos com base no desvio padrao da populagdo
torna-se limitada, visto que os valores de RPD obtidos para distribuicdo normal e log-normal
nao sao diretamente comparaveis. Nesse contexto, o indice RPIQ, que ¢ baseado em quartis,
representa melhor a distribui¢do da populagdo, uma vez que determina faixas equivalentes de
dispersdao. Em contrapartida, a métrica RPD calculada para distribuicdes log-normal pode,
enganosamente, indicar um bom desempenho (Bellon-Maurel et al., 2010).

Corroborando os resultados obtidos na faixa vis-NIR-SWIR, as técnicas de pré-
processamento espectral mostraram-se eficientes em aumentar o poder preditivo para a
maioria dos atributos avaliados, com excecao da predicao de areia, silte € V (Apéndices E e
F). A suavizacdo com o filtro Savitzky-Golay promoveu melhorias na predi¢ao de argila, Al,
N, P, Mg, SB, CTC, PST e CE, enquanto a conversao dos valores espectrais para absorbancia
melhorou a precisdo da modelagem de CO, K, Ca, Na e pH.

O algoritmo de regressado PLSR foi responsavel por produzir as melhores
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predicdes para a maioria dos atributos, comportamento semelhante ao observado na faixa vis-
NIR-SWIR. Contudo, na modelagem realizada na faixa MIR, os algoritmos SVM com fung¢ao
Kernel radial e com fungdo linear apresentaram desempenho equivalente algoritmo Cubist.
Em contraste, Beniaich ef al. (2025) relataram que a predicao realizada com o SVM-Linear
apresentou os melhores resultados, enquanto Santos et al. (2020) observaram que os modelos

SVM e PLSR apresentaram desempenhos preditivos semelhantes.

4.3.4 Melhores modelos preditivos

O desempenho dos modelos de validagdo com dados espectrais na regido do
infravermelho médio superou as modelagens realizadas na faixa do visivel ao infravermelho
de ondas curtas, tendo em vista que os indices de avaliagdo (R?, RPD e RPIQ) alcangaram os
maiores valores em mais de 70% dos atributos nessa faixa (Tabela 5). O atributo calcio nao
foi modelado com confianga em nenhuma das regides espectrais, pois todos os modelos

apresentaram R? inferior a 0,50, por isso, seu resultado ndo foi apresentado na tabela a seguir.
b b

Tabela 5 — Resultado dos melhores modelos de validagdo por atributo do solo

. Regiao . Tratamento R? RMSE
Atributo espectral Par. Algoritmo espectral valid.  valid. RPD  RPIQ
Areia MIR 20/9 Cubist Bruto 0,893 52,321 3,095 5,074
Silte MIR 15 PLSR Bruto 0,830 51,656 2,462 2817
Argila MIR 16 SVM radial SG 0,879 38,614 2,922 3,781
CO MIR 20/0 Cubist Abs 0,800 1,221 2,271 3,182
N MIR 14 PLSR SG 0,738 0,283 1,984 1,866
P MIR 1 SVM linear SG 0,773 10,600 2,132 0,689
K MIR 6 PLSR Abs 0,644 0,046 1,700 1,716
Mg MIR 32 SVM radial SG 0,638 1,156 1,686 0,865
Na vis-NIR-SWIR 14 PLSR Bruto 0,623 1,020 1,653 0,255
Al MIR 7 PLSR SG 0,712 0,352 1,890 2,303
SB MIR 1 SVM linear SG 0,648 4387 1,710 0,609
CTC MIR 1 SVM linear SG 0,616 4,578 1,637 0,412
v vis-NIR-SWIR  1/9 Cubist SG 0,699 14,995 1,850 3,368
pH MIR 10 PLSR Abs 0,553 0,576 1,518 1,822
PST vis-NIR-SWIR  10/9 Cubist SG 0,673 9,095 1,775 0,651
CE MIR 9 PLSR SG 0,832 0,188 2,478 0,785

Par: parametros do modelo; SG: Suavizagao por Savitzky-Golay; Abs: absorbancia; R? valid.: coeficiente de determinacdo da
validagdo; RMSE valid.: raiz do erro quadratico médio da valida¢do; RPD: razdo da performance do desvio; RPIQ: razdo de
desempenho para intervalo interquartil.

Fonte: Elaborado pela autora.
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As predicdes realizadas na faixa do visivel ao infravermelho de ondas curtas
foram superiores as obtidas com dados espectrais do infravermelho médio apenas para o
sodio, percentagem de saturagdo por sodio e saturagao por bases. A menor precisdao preditiva
observada na regido vis-NIR-SWIR est4 associada a baixa absor¢do nessa faixa que apresenta
fraca assinatura espectral, se relacionando somente com os tons e combinagdes das bandas
moleculares fundamentais presentes no MIR (Ng et al., 2019).

O predominio de melhores resultados com dados MIR, em comparacao a predi¢ao
no vis-NIR-SWIR, também foi relatado por Terra; Dematté; Rossel (2015), Ng ef al. (2019) e
Beniaich et al. (2025) para atributos fisicos e quimicos do solo, por Terra; Rossel; Dematté
(2019) para carbono e por Santos et al. (2020) para modelagem de carbono e nitrogénio. Em
contraste, Di Raimo et al. (2022) observaram que o espectro fundido vis-NIR-SWIR + MIR
apresentou o melhor desempenho, seguido do vis-NIR-SWIR, enquanto os modelos
exclusivos com a faixa MIR alcangaram resultados inferiores.

Entre os atributos modelados, destacaram-se areia, silte, argila, carbono organico,
aluminio e saturacdo por bases, que apresentaram acuracia classificada como excelente.
Embora as predigoes de Al e V tenham exibido valores de R? indicativos de desempenho
razoavel, os altos valores de RPIQ demonstram a boa precisdo preditiva dos modelos. Para os
demais atributos, a qualidade preditiva foi considerada razoavel, em razdo da divergéncia
entre as métricas de avaliacdo, pois, enquanto R? e RPD variaram de excelente a razoavel, os
valores de RPIQ foram, em sua maioria, mais baixos, situando-se entre as classes de razoavel
e ndo confiavel.

Os baixos valores de RPIQ na modelagem decorrem das caracteristicas de
distribuicdo dos dados. Para Clingensmith; Grunwald, (2022) os menores valores dessa
métrica sdo justificados pelo alto grau de assimetria e curtose dos dados. De modo
complementar, Ng et al. (2022) observaram existir uma relagao log-linear com o intervalo
interquartil (IQR), assim, varidveis que apresentam IQR < 1 tendem a ter menores valores de
RPIQ e baixa precisdo preditiva.

O bom desempenho preditivo da areia, silte, argila e carbono organico em todas as
faixas espectrais avaliadas, ¢ resultado de suas propriedades intrinsecas, que constituem
relagdes espectrais de primeira ordem. Tais atributos afetam diretamente o espectro do solo,
alterando as intensidades de reflectancia e as caracteristicas de absorcao (Terra et al., 2021).
Por sua vez, o melhor desempenho observado para esses atributos na regido MIR ¢ decorrente
da forma de interag@o entre a radiacdo eletromagnética e os grupos funcionais dos compostos

minerais e organicos do solo, predominando as vibragdes fundamentais nessa faixa, o que



127

torna a resposta espectral mais expressiva (Beniaich et al., 2025).

O aluminio e a saturacdo por bases, apesar de ndo alterarem diretamente o
espectro por possuirem relagdo espectral de segunda ordem, puderam ser modelados com
precisao na faixa MIR e vis-NIR-SWIR, respectivamente. Os atributos com relagao espectral
de segunda ordem ndo apresentam caracteristicas de absor¢do nem modificam diretamente a
intensidade de reflectancia. Contudo, como geralmente estdo adsorvidos ou dependem de
grupos funcionais de compostos minerais e organicos, podem ser previstos por meio de sua
correlagdo com os atributos de primeira ordem (Terra et al., 2021).

Sob essa perspectiva, Terra; Dematté; Rossel (2015) observaram que propriedades
do solo indicativas de acidez, como Al e pH, podem ser estimadas pela sua correlagdo
significativa com o contetido de carbono organico, o qual apresenta forte interacdo com a
regido MIR. Em consonancia com esses achados, no presente estudo o carbono organico,
aluminio trocavel e pH apresentaram as melhores predicdes na faixa espectral MIR. O
resultado obtido refor¢a que os atributos relacionados a acidez foram modelados por previsdes
de segunda ordem a partir de sua relagdo com o CO.

Ainda nessa perspectiva, 0os macronutrientes sao preditos a partir da correlagao
entre o elemento avaliado e os atributos de primeira ordem (Rizzo et al., 2021). Os nutrientes
Ca, Mg e K sdo normalmente estimados em fun¢do da sua covariagdo com as propriedades
mineralogicas (Chang et al., 2001). O N, por sua vez, ¢ modelado pela sua alta correlagdo
com o contetido de carbono, enquanto o P ¢ associado tanto a mineralogia da argila quanto ao
conteudo de matéria organica (Terra et al., 2021).

Embora exista grande interesse no uso da espectroscopia de reflectdncia para
prever macronutrientes e atributos relacionados a fertilidade quimica do solo, a literatura
evidencia resultados muito variaveis (Terra et al., 2021). Em consonancia, neste estudo a
predicao dos macronutrientes apresentou desempenho variado, com os modelos de N e K
alcangando os melhores valores das métricas de ajuste, enquanto o P ¢ Mg mostraram
resultados contrastantes para as métricas. O mesmo comportamento foi observado para o Na,
também cation trocavel, sugerindo tratar-se de uma previsdao de segunda ordem, associada
com as propriedades mineralogicas.

As predicoes de CE e PST foram classificadas como de terceira ordem, por
estarem relacionadas a atributos de segunda ordem. A condutividade elétrica do solo estad
ligada ao acumulo de sais soliveis em agua, como Na, Ca e Mg, enquanto a percentagem de
sodio trocavel possui relagdo direta com os valores de Na e CTC, sendo, portanto,

influenciada pela composicao catidnica do solo. Os cations Ca e Mg desempenham papel
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expressivo na formacao dos carbonatos e na estrutura dos argilominerais do tipo 2:1, os quais
afetam diretamente o espectro do solo (Lotfollahi et al., 2023).

Considerando o desempenho razoavel dos modelos de CE e PST, acredita-se que
ajustes metodoldgicos, como a aplicacao de diferentes algoritmos e a ampliacao do conjunto
de dados, possam aumentar a precisdo preditiva. Di Raimo et al. (2022) destacaram que
acréscimos na base de dados e na amplitude dos valores dos atributos podem promover
ganhos significativos no desempenho dos modelos, especialmente na etapa de validagdo.
Assim, tais ajustes metodoldgicos ndo devem ser negligenciados, sobretudo diante da
escassez de estudos espectrais desses atributos na faixa do MIR, refor¢ando a importancia de
pesquisas que avancem nessa direcao.

Com relacdo aos algoritmos de regressdo avaliados, a regressdao PLSR foi a mais
eficiente, produzindo os melhores modelos para sete atributos (silte, N, K, Na, Al, pH e CE),
enquanto os métodos de aprendizado de maquina, apresentaram eficiéncia ligeiramente
menor, tendo os trés algoritmos testados (SVM radial, SVM linear e Cubist) promovido os
melhores modelos para os demais atributos. Esses resultados contrastam com os relatados por
Dangal et al. (2019), que observaram superioridade do algoritmo Cubist em relagdo a
regressdao PLSR na predicao de atributos do solo em uma biblioteca nacional, tendo o Cubist
sido ligeiramente superior a outros métodos de aprendizado de maquina.

E importante destacar que nenhum algoritmo pode ser considerado o melhor, de
modo que a sua eficiéncia depende do conjunto de dados e da regido especificada (Mondal et
al., 2025). No presente estudo, como o conjunto de dados avaliado era relativamente pequeno
e oriundo de uma mesma regido geografica, acredita-se que ndo havia predominio de relagdes
muito complexas entre os atributos do solo e os dados espectrais. Nesses casos em que as
relacdes tendem a ser mais simples, o algoritmo PLSR pode obter bons resultados preditivos.

A regressao PLSR ¢ apropriada para a predicdo com conjunto de dados
relativamente homogéneo e com relagdo linear, entretanto, quando se trata de dados
heterogéneos seu desempenho ¢ limitado, sendo necessario usar técnicas mais complexas e
ndo lineares, como os métodos de aprendizado de maquina (Shen et al., 2022). Nessas
circunstancias, os algoritmos Cubist ¢ SVM podem produzir bons resultados, uma vez que
capturam tanto relagdes lineares quanto nao lineares, além de apresentarem menor
sensibilidade a valores discrepantes (Clingensmith; Grunwald, 2022; Beniaich et al., 2025).

No que se refere a eficiéncia dos métodos de pré-processamento, a suavizagao
com o filtro Savitzky-Golay destacou-se como a técnica mais eficaz, resultando nos melhores

desempenhos para a maioria dos atributos avaliados. Em contrapartida, os dados de
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reflectancia bruta e os convertidos em absorbancia proporcionaram ganhos mais restritos,
promovendo melhorias em um menor nimero de atributos. Diferentemente dos resultados
obtidos, Santos et al. (2020) relataram que, dentre os sete tipos de pré-processamento
avaliados, a técnica de Savitzky-Golay apresentou o menor desempenho. Esses achados
ratificam que ndo hd uma técnica de processamento universalmente aplicavel.

Considerando que apenas a modelagem de célcio apresentou desempenho nio
confidvel, sendo classificada como incapaz de gerar predi¢do precisa, entende-se que a adocao
de outras abordagens metodologicas pode melhorar a precisdo preditiva dos modelos com
desempenho entre razodvel e excelente. Nesse sentido, as previsdes classificadas como
razoaveis podem ser melhoradas por meio de ajustes nos dados de calibracdo e do uso de
modelos estatisticos mais robustos; contudo, os modelos enquadrados na faixa de ndo
confiavel, provavelmente, ndo apresentam potencial de melhora (Chang et al., 2001).

Nessa perspectiva, o aumento da base de dados com adigdo de amostras da regido
estudada e a estratificacdo dos dados considerando caracteristicas pedologicas ou espectrais
podem ser abordagens promissoras, conforme foi relatado por Wijewardane ef al. (2018). Os
autores observaram que a estratificacdo das amostras pedologicas se embasando no horizonte

ou na ordem de solo ¢ uma estratégia eficaz para melhorar o desempenho preditivo.

4.4 Conclusoes

Os resultados obtidos neste estudo validam a hipotese proposta de que a
espectroscopia de reflectancia do visivel ao infravermelho médio (vis-MIR) ¢é capaz de
predizer com precisdo os atributos fisico-quimicos de solos do Nordeste brasileiro,
constituindo uma alternativa eficiente aos métodos tradicionais de analise do solo. O atributo
calcio apresenta-se como exceg¢do, pela obtencao de modelos sem confiabilidade em todas as
faixas avaliadas.

Adicionalmente, confirma-se o ganho preditivo da faixa do infravermelho médio
para a maioria dos atributos avaliados, evidenciado pelo aumento dos valores das métricas de
R2, RPD e RPIQ. As interagdes fundamentais entre a radiacdo e os constituintes do solo na
faixa MIR resultam na melhoria da variabilidade explicada e da precisdo preditiva dos
modelos, corroborando a conjectura do maior potencial preditivo desta regido do espectro.

O estudo demonstra que o desempenho dos modelos ¢ fortemente influenciado
pelas técnicas quimiométricas adotadas. Assim, a aplicagao de técnicas de pré-processamento,

especialmente a suavizacdo Savitzky-Golay, representa uma etapa fundamental para extrair
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informagodes importantes e melhorar a qualidade das regressdes. Além disso, constata-se que o
tipo de algoritmo de regressdo tem grande impacto, evidenciando que técnicas consolidadas,
como a regressao por minimos quadrados parciais, podem apresentar desempenho equivalente
ou superior aos métodos de aprendizado de maquina mais complexos.

Por fim, a predicdo da salinidade e sodicidade por meio da quantificacdo da
condutividade elétrica e da percentagem de sodio trocavel, representam um avango
significativo, dada a escassez de estudos de espectroscopia, principalmente na faixa do MIR,
dedicadas a estes atributos. O desempenho razoavel obtido nos modelos abre espago para
novas investigacdes que visem melhorar a precisdo preditiva, evidenciando o potencial de
utilizagdo da espectroscopia de reflectincia como técnica rapida e eficiente para o

monitoramento de solos susceptiveis a degradacao.
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5 CONSIDERACOES FINAIS

Os resultados obtidos ratificam o potencial da espectroscopia de reflectancia como
uma ferramenta alternativa e eficiente para a analise pedologica. Corroborando as hipoteses
propostas, esta técnica demonstra capacidade para caracterizar o comportamento espectral e
os atributos dos solos do Nordeste brasileiro, bem como para realizar predi¢des dos atributos
de forma confidvel. Nesse contexto, as avaliagdes qualitativas e quantitativas dos dados
espectrais mostram-se complementares, configurando uma metodologia robusta para a
caracterizagdo dos solos, especialmente em areas extensas e heterogéneas, como o Nordeste.

Os solos avaliados caracterizam-se pelos elevados teores de areia, pela presenga
de minerais primdrios e secundarios menos intemperizados e pela ocorréncia frequente de
carbonatos. Estas caracteristicas diferenciam os solos do Nordeste daqueles de regides
tropicais umidas e influenciam diretamente o comportamento espectral. Tais aspectos
refletem-se na alteragdo da intensidade de reflectancia e na presencga de feicdes de absor¢do
especificas nas curvas espectrais, observadas, principalmente, nos horizontes subsuperficiais,
0s quais possuem relevancia diagndstica para a classificagdao dos solos.

Além disso, os solos do Nordeste destacam-se pela alta concentracdo de sais, o
que lhes confere caracteristicas de salinidade e sodicidade. Embora tais atributos ndo sejam
identificaveis no espectro, a aplicagdo da técnica de classificagdo ndo supervisionada
possibilita a identificacdo de grupos de amostras com estas caracteristicas, sobretudo quando
usado dados da faixa do infravermelho médio. Resultado que ¢ inovador para a caracterizagao
dos solos desta regido.

O acumulo de sais observado em muitos dos perfis de solos analisados evidencia a
expressiva ocorréncia da salinidade e sodicidade na regido Nordeste, corroborando a
susceptibilidade desses solos a degradac¢do. Assim, técnicas com potencial para avaliar essas
caracteristicas de forma rapida e de baixo custo devem ser priorizadas. Nessa perspectiva, as
analises espectrais configuram-se como uma ferramenta promissora, uma vez que OS
resultados obtidos neste estudo ja evidenciam desempenho razoavel. Portanto, recomenda-se
o desenvolvimento de novas pesquisas visando aprimorar o desempenho da modelagem

espectral para a predi¢ao da salinidade e sodicidade.
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APENDICE A - CLASSIFICACAO DOS SOLOS E IDENTIFICACAO DO PONTO DO
PERFIL NO LEVANTAMENTO DOS SOLOS DO ESTADO DO CEARA

Classe (subgrupo) Subordem N Cidade N
Perfil Campo
NEOSSOLO FLUVICO Psamitico tipico RY 1 Caucaia 7P-123C
NEOSSOLO QUARTZARENICO Ortico tipico RQ 2 Acarat 7P-02P
PLANOSSOLO NATRICO Ortico tipico SN 3 Miraima 7P-09P
LUVISSOLO HAPLICO Palico abriptico TX 4 Miraima 7P-011P
ARGISSOLO ACINZENTADO Eutrofico tipico PAC 5 Itarema 7P-016P
ARGISSOLO AMARELO Distrofico tipico PA 6 Amontada 7P-17P
NEOSSOLO FLUVICO Sédico tipico RY 7 Amontada  7P-018P
GLEISSOLO SALICO Sédico tipico GZ 8 Amontada  7P-019P
ARGISSOLO AMARELO Distrocoeso solodico PA 9 Itapipoca 7P-20P
PLANOSSOLO NATRICO Ortico mésico SN 10 Itapipoca  7P-023P
CAMBISSOLO HAPLICO Tb Eutréfico tipico CX 11 Itapipoca 7P-28P
ARGISSOLO VERMELHO-AMARELO Distrofico
. PVA 12 Amontada 7P-34P
arénico
NEOSSOLO QUARTZARENICO Hidromérfico tipico RQ 13 Paracuru 7P-50P
LATOSSOLO AMARELO Distrofico psamitico LA 14 Trairi 7P-40P
NEOSSOLO FLUVICO Ta Eutréfico solodico RY 15 Paraipaba 7P-46P
VERTISSOLO EBANICO Sédico salino VE 16 Paraipaba 7P-49P
PLANOSSOLO NATRICO Ortico mésico SN 17 Caucaia  7P-118C
ARGISSOLO VERMELHO-AMARELO Distrofico
. PVA 18 Cruz 7P-59P
arénico
ARGISSOLO VERMELHO Distroéfico nitossolico PV 19 Maranguape 7P-111C
CAMBISSOLO HAPLICO Tb Distréfico saprolitico CX 20 Massapé 7P-85P
LUVISSOLO CROMICO Ortico abruptico TC 21 Massapé 7P-72P
PLANOSSOLO HAPLICO Eutréfico tipico SX 22 Massapé 7P-74P
NEOSSOLO LITOLICO Eutréfico tipico RL 23 Acarau 7P-80P
PLINTOSSOLO ARGILUVICO Eutréfico
FT 24 Marco 7P-88P

petroplintico
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Parametros  Areia Silte Argila K Ca Mg Na N C CE PST pH

estatisticos g kg- cmolc kg-! g kg- dSm-! % (H20)
ARGISSOLO

Média 759,2 86,3 1538 0,1 05 03 0,1 0,6 49 0,2 3,7 5,0

Desvio Padrao 118,5 659 1143 0,1 04 03 0,01 51 1,0 0,2 2,7 0,6

Minimo 5280 4,0 130 0,0 0,1 0,0 0,0 0,0 0,1l 0,0 0,0 4,2

Maximo 919,0 242,0 4290 03 16 19 02 50 268 09 10,2 6,4

Mediana 787,0 67,0 1020 0,1 05 02 0,1 04 33 0,2 3,5 5,0

1° Quartil 633,0 450 670 01 02 01 0,1 0,1 22 0,1 1,8 4,7

3° Quartil 865,0 100,0 197,00 0,2 0,7 03 0,1 05 58 0,2 5,0 52

CAMBISSOLO

Média 659,7 207,6 1332 0,1 09 05 0,1 09 59 0,1 2,1 5,1

Desvio Padrao 107,7 782 450 0,01 05 02 00 09 6,1 0,1 1,2 0,9

Minimo 4220 1620 590 0,1 03 02 0,0 0,1 1,8 0,1 0,5 3,9

Maéximo 767,0 403,0 1970 02 1,7 09 0,1 33 204 03 3,8 59

Mediana 699,0 173,0 1220 02 08 05 0,1 0,6 3,0 0,1 2,5 5,5

1° Quartil 657,0 172,0 113,0 0,1 0,7 04 00 05 22 0,1 0,9 4,1

3° Quartil 708,0 189,0 1760 0,2 1,2 0,7 0,1 1,0 6,0 0,2 3,0 5,6

GLEISSOLO

Média 334,6 4154 2502 0,1 32 46 32 0,1 21 5,1 39,1 6,6

Desvio Padrao 278,2 1784 104,66 0,1 3,7 45 0,6 02 23 3,9 19,2 1,0

Minimo 100,0 187,0 1050 0,0 09 1,5 22 0,0 00 0,4 8,3 5,5

Maéximo 708,0 552,0 356,0 03 9,7 122 3,7 05 5,6 9,2 59,1 7,6

Mediana 203,0 537,0 260,0 0,1 1,6 22 34 0,0 2,1 4,1 40,6 6,8

1° Quartil 110,0 257,0 1910 0,0 13 21 33 0,0 0,0 3,0 37,3 5,6

3° Quartil 552,0 544,0 3390 0,1 24 51 35 02 29 9,1 50,3 7,3

LATOSSOLO

Média 844,8 388 1168 0,1 02 0,1 0,0 05 3,7 0,2 2,2 5,5

Desvio Padrao 36,2 2,6 360 0,0 0,0 00 00 04 20 0,1 0,8 0,3

Minimo 815,0 350 600 0,1 01 00 00 03 2,1 0,1 0,8 5,0

Méximo 900,0 42,0 1480 02 02 01 00 1,3 70 0,4 2,8 5,7

Mediana 827,0 390 1340 o1 02 01 00 04 34 0,1 2,4 5,5

1° Quartil 819,0 380 1030 01 02 01 00 03 23 0,1 2,4 5,5

3° Quartil 863,0 40,0 1390 02 02 0,1 0,0 05 3,8 0,2 2,8 5,6

Continua...
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Parametros  Areia Silte Argila K Ca Mg Na N C CE PST pH

estatisticos g kg- cmolc kg-! g kg- dSm-! % (H20)
LUVISSOLO

Média 517,1 2759 207,5 0,2 11,3 86 02 1,0 6,8 0,2 1,4 5,7

Desvio Padrao 109,2 34,6 108,1 0,1 3,5 94 02 1,6 72 0,1 1,0 0,5

Minimo 336,0 230,0 53,0 o1 69 21 01 0,1 23 0,1 0,2 5,0

Méximo 717,0 319,0 430,0 04 16,0 26,0 04 48 241 04 2,8 6,2

Mediana 523,0 282,5 189,0 0,1 124 3,5 03 04 44 0,1 1,5 5,8

1° Quartil 486,0 244,8 1700 0,1 80 2,7 0,1 0,2 3,1 0,1 0,3 53

3° Quartil 545,5 301,0 2282 0,2 13,5 109 04 1,0 6,0 0,2 2,0 6,0

NEOSSOLO

Média 8243 114,1 619 01 1,1 08 02 04 25 0,3 5,6 6,0

Desvio Padrao 160,6 108,6 59,5 0,1 08 0,7 0,6 05 23 0,7 10,0 0,8

Minimo 4850 2,0 30 00 01 01 00 00 0,6 0,0 0,7 4,8

Maximo 995,0 367,0 2250 0,2 32 3,1 3,6 22 100 4,6 54,6 7,2

Mediana 9020 740 370 01 10 06 01 02 14 0,1 2,0 6,1

1° Quartil 692,5 200 180 0,0 04 04 00 0,1 1,1 0,1 1,5 5,7

3° Quartil 960,5 203,5 1010 o1 14 12 0,1 04 29 0,2 4,5 6,5

PLANOSSOLO

Média 712,7 151,1 136,7 0,1 38 19 1,0 05 33 0,7 12,0 5,4

Desvio Padrao 1474 68,0 1257 0,1 38 19 1,0 05 33 0,7 1895 54

Minimo 467,0 57,0 40 01 0,1 00 0,0 0,0 0,7 0,1 0,2 4,2

Maéximo 939,0 386,0 404,0 02 209 91 7,0 14 7,6 3.4 68,4 6,8

Mediana 751,0 1450 990 0,1 09 09 02 0,5 26 0,2 4,1 5,1

1° Quartil 579,0 1140 220 01 04 03 0,0 02 2.1 0,1 0,9 5,0

3° Quartil 822,5 167,5 2520 0,1 3,0 1,8 L,5 0,7 42 0,9 13,7 5,8

PLINTOSSOLO

Meédia 6658 87,5 2478 0,1 1,3 1,1 0,1 1,2 6,6 0,1 1,2 5,1

Desvio Padrao 136,8 19,2 128,7 0,0 03 0,1 0,0 1,0 6,5 0,0 0,5 0,5

Minimo 547,0 69,0 1000 0,1 1,1 09 0,0 04 0,7 0,0 0,6 4,6

Méximo 814,0 114,0 3740 02 1,7 1,2 0,1 24 152 0,1l 1,7 5,6

Mediana 651,0 835 2585 01 1,2 1,1 0,0 1,0 53 0,1 1,3 5,1

1° Quartil 550,8 77,25 161,5 0,1 1,1 1,0 0,0 04 2,1 0,0 0,9 4,8

3° Quartil 766,0 93,75 3448 0,1 13 12 01 1,7 98 0,1 1,6 5,4

VERTISSOLO
Média 308,0 349,8 3425 03 59 84 62 09 55 4,0 23,6 6,9




144

Parametros  Areia Silte Argila K Ca Mg Na N C CE PST pH
estatisticos g kg- cmolc kg-! g kg- dSm-! % (H20)

Desvio Padrao 122,2 51,5 751 0,1 0.8 3,1 6,8 0,7 3,0 4.4 19,5 1,0

Minimo 208,0 273,0 256,0 02 47 50 04 02 20 0,4 3.4 59

Maximo 472,0 381,0 4140 04 6,5 120 158 1,9 09,1 10,2 45,6 8,2

Mediana 276,0 3725 350,0 02 6,2 82 44 08 56 2,7 22,6 6,8

1° Quartil 218,5 343,5 2920 02 58 64 20 05 4,1 1,0 9,4 6,4

3° Quartil 365,5 3788 400,5 03 63 10,1 86 1,2 70 5,8 36,8 7,4

conclusio



145

APENDICE C - RESULTADO DA CALIBRACAO E VALIDACAO DOS MODELOS
PREDITIVOS PARA OS ATRIBUTOS FiSICOS COM ESPECTROS VIS-NIR-SWIR

Algoritmo  1ratamento-dados p, . RMSE o, g, RMSE RPD RPIQ
espectrais calib. valid.

Areia (g/kg) (DP=161,953)

Bruto 0,490 148,959 0,609 99,761 1,623 2,660
PLSR Abs 0,556 139,092 0,627 97,464 1,662 2,724
SG 0,475 151,158 0,649 94,482 1,714 2,810
Bruto 0,505 146,850 0,467 116,441 1,391 2,280
SVM - radial Abs 0,519 144,642 0,478 115,240 1,405 2,304
SG 0,503 147,032 0,468 116,411 1,391 2,281
Bruto 0,602 131,548 0,567 105,015 1,542 2,528
SVM - linear Abs 0,739 106,550 0,625 97,685 1,658 2,718
SG 0,543 141,038 0,646 94,970 1,705 2,796
Bruto 0,507 146,454 0,627 97,505 1,661 2,723
Cubist Abs 0,647 123,967 0,776 75,471 2,146 3,518
SG 0,634 126290 0,676 90,765 1,784 2,925
Silte (g/kg) (DP = 127,192)

Bruto 0,509 82,903 0,602 79,055 1,609 1,840
PLSR Abs 0,620 72,964 0,602 79,071 1,609 1,840
SG 0,496 84,045 0,614 77,860 1,634 1,869
Bruto 0,538 80,407 0,086 119,830 1,060 1,214
SVM - radial Abs 0,262 101,636 0,166 114,453 1,110 1,270
SG 0,256 102,091 0,176 113,759 1,118 1,279
Bruto 0,667 68,246 0,442 93,633 1,358 1,554
SVM - linear Abs 0,748 59,396 0,516 87,171 1,459 1,669
SG 0,610 73,882 0,522 86,592 1,469 1,680
Bruto 0,540 80,228 0,451 92,856 1,370 1,567
Cubist Abs 0,473 85,948 0,309 104,139 1,221 1,397
SG 0,496 84,053 0,353 100,799 1,262 1,443

Argila (g/kg) (DP = 112,820)
Bruto 0,654 67,334 0,650 65,740 1716 2.221
PLSR Abs 0,698 62,890 0,753 55,208 2,044 2,645
SG 0,705 62,205 0,692 61,665 1,830 2,368
Bruto 0,728 59,655 0,630 67,582 1,669 2,160
SVM - radial Abs 0,710 61,669 0,628 67,771 1,665 2,154
SG 0,759 56,254 0,621 68,433 1,649 2,133
Bruto 0,739 58,432 0,759 54,608 2,065 2,674
SVM - linear Abs 0,845 45,114 0,734 57,305 1,969 2,548
SG 0,697 63,007 0,755 55,037 2,050 2,653
Bruto 0,635 69,186 0,783 51,769 2,179 2,820
Abs 0,728 59,703 0,831 45,657 2,471 3,198

Cubist

SG 0,755 56,687 0,731 57,686 1,956 2,531
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APENDICE D - RESULTADO DA CALIBRACAO E VALIDACAO DOS MODELOS
PREDITIVOS PARA OS ATRIBUTOS QUiMICOS COM ESPECTROS VIS-NIR-
SWIR

. Tratamento — 2 nals RMSE R? RMSE
Algoritmo dados espectrais R? calib. calib.  valid. valid. RPD  RPIQ

Carbono organico (g/kg) (DP = 2,772)

Bruto 0,797 2,127 0,716 1456 1,904 2,669
PLSR Abs 0,790 2,162 0,614 1,698 1,633 2,288
SG 0,770 2261 0,708 1,475 1879 2,633

SUM. Bruto 0,736 2,421 0,390 2,134 1299 1,821
radial Abs 0,791 2,154 0348 2206 1257 1,761
SG 0,736 2424 0388 2,136 1298 1,819

SUM. Bruto 0,751 2,353 0,678 1,550 1,788 2,506
linear Abs 0,813 2,037 0529 1,874 1479 2,073
SG 0,716 2,512 0,674 1,559 1,779 2,493

Bruto 1,000 0,086 0,716 1,454 1,906 2,671

Cubist Abs 0,999 0,114 0,697 1,504 1,844 2,584
SG 1,000 0,082 0476 1977 1403 1,965

Nitrogénio (g/kg) (DP = 0,561)

Bruto 0,842 0,358 0,452 0,409 1,371 1,289

PLSR Abs 0,801 0,402 0433 0416 1,348 1,268
SG 0,813 0,389 0,449 0410 1368 1,286

SUM. Bruto 0,806 0,397 0,378 0,436 1,287 1,210
radial Abs 0,921 0254 0,117 0519 1,080 1,016
SG 0,893 0,294 0,201 0,494 1,136 1,068

SUM. Bruto 0,823 0379 0,338 0,450 1,248 1,173
linear Abs 0,873 0,322 0,328 0453 1238 1,164
SG 0,736 0,463 0,367 0440 1276 1,200

Bruto 0,734 0,464 0,510 0,387 1,450 1,364

Cubist Abs 0,789 0,414 0,446 0412 1363 17282
SG 0,613 0,560 0,282 0468 1,198 1,126

Fosforo (mg/kg) (DP = 22,603)

Bruto 0,897 4343 0,733 11,497 1,966 0,635

PLSR Abs 0,533 9244 0412 17,073 1,324 0,428
SG 0,871 4856 0,745 11,257 2,008 0,648

SUM.- Bruto 0,522 9355 0,255 19,218 1,176 0,380
radial Abs 0,537 9209 0,318 18,388 1,229 0,397
SG 0,500 9,572 0,258 19,186 1,178 0,380

— Bruto 0,655 7,952 0,482 16,025 1,410 0,456
linear Abs 0,543 9,149 0,365 17,738 1274 0,412
SG 0,625 8,287 0,502 15,714 1,438 0,465

Continua...
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Tratamento —

RMSE

RZ

RMSE

Algoritmo dados espectrais R? calib. calib.  valid. valid. RPD — RPIQ
Bruto 0,529 9281 0,240 19412 1,164 0,376
Cubist Abs 0,498 9,585 0,165 20,346 1,111 0,359
SG 0,380 10,658 0213 19,752 1,144 0,370

Potassio (cmol/kg) (DP = 0,078)
Bruto 0,385 0,057 0,247 0,067 1,170 1,180
PLSR Abs 0,559 0,048 0,605 0,048 1,615 1,630
SG 0,523 0,050 0,338 0,063 1,248 1,259
SUM. Bruto 0,160 0,064 0,153 0,071 1,103 1,113
radial Abs 0,224 0,064 0,139 0,071 1,094 1,104
SG 0,215 0,064 0,154 0,071 1,103 1,114
— Bruto 0,614 0,045 0,387 0,060 1296 1,308
linear Abs 0,609 0,045 0,494 0,055 1,427 1,441
SG 0,508 0,051 0,363 0,061 1272 1,284
Bruto 0,998 0,003 0,116 0,072 1,079 1,089
Cubist Abs 0,056 0,070 0,128 0,072 1,087 1,097
SG 0,048 0,070 0,091 0,073 1,064 1,074

Calcio (cmol/kg) (DP = 5,032)

Bruto 0,622 2,129 0274 4225 1,191 0315
PLSR Abs 0,352 2,789 0,481 3,571 1,409 0,372
SG 0,727 1,809 0434 3,730 1349 0,357
SUM. Bruto 0,483 2,490 0,028 4,888 1,030 0,272
radial Abs 0,614 2,152 0,032 4877 1,032 0,273
SG 0,666 2,002 0,046 4811 1,039 0,275
SUM. Bruto 0,775 1,645 0268 4242 1,18 0314
linear Abs 0,770 1,662  -0,101 5201 0,968 0,256
SG 0,747 1,743 0342 4,023 1251 0,331
Bruto 0,636 2,000 0,217 4387 1,147 0,303
Cubist Abs 0,713 1,857 0427 3,755 1340 0,354
SG 0,627 2,115 0215 4392 1,146 0,303

Magnésio (cmol/kg) (DP = 1,950)
Bruto 0,679 2,395 0,505 1,351 1,443 0,740
PLSR Abs 0,646 2,515 0,359 1,538 1,268 0,650
SG 0,603 2,663 0458 1,414 1379 0,707
— Bruto 0,236 3,696 0,293 1,615 1,207 0,619
radial Abs 0,358 3389 0,362 1,534 1271 0,652
SG 0,260 3,639 0,346 1,554 1,255 0,644
— Bruto 0,713 2,266 0,469 1,399 1393 0,715
linear Abs 0,775 2,005 0,028 1,894 1,029 0,528
SG 0,720 2237 0481 1384 1409 0,723
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Tratamento —

RMSE

RZ

RMSE

Algoritmo dados espectrais R? calib. calib.  valid. valid. RPD — RPIQ
Bruto 0,897 1,359 -1,274 2,896 0,673 0,345
Cubist Abs 0,914 1,238 -0,936 2,672 0,730 0,374
SG 1,000 0,065 -1264 2890 0,675 0,346
Sédio (cmol/kg) (DP = 1,687)
Bruto 0,490 1,377 0,623 1,020 1,653 0,255
PLSR Abs 0,493 1,373 0,521 1,150 1,467 0,227
SG 0,431 1,455 0,608 1,040 1,621 0,250
SUM. Bruto 0,312 1,599 0,186 1,499 1,125 0,174
radial Abs 0,243 1,678 0,108 1,570 1,074 0,166
SG 0,205 1,720 0,169 1,515 1,113 0,172
— Bruto 0,232 1,600 0,340 1,350 1,250 0,193
linear Abs 0,329 1,580 0,530 1,139 1481 0,229
SG 0,194 1,731 0264 1,425 1,183 0,183
Bruto 1,000 0,037 0,510 1,163 1,450 0,224
Cubist Abs 1,000 0,024 0,506 1,167 1,445 0,223
SG 1,000 0,025 0,520 1,151 1,465 0,226
Aluminio trocavel (cmol/kg) (DP = 0,665)
Bruto 0,136 0,757 0,313 0,543 1,224 1,492
PLSR Abs 0,178 0,738 0,278 0,557 1,194 1,455
SG 0,136 0,757 0,312 0,543 1,224 1,492
SUM. Bruto 0,431 0,614 0,496 0501 1,327 1,616
radial Abs 0,465 0,596 0,495 0465 1,429 1,740
SG 0,420 0,620 0,498 0,464 1,432 1,745
SUM. Bruto 0,532 0,557  -0,151 0,703 0946 1,153
linear Abs 0,550 0,546  -0,647 0,840 0,791 0,964
SG 0,452 0,603 0,020 0,648 1,026 1,250
Bruto 0,516 0,566 0,355 0,526 1,264 1,541
Cubist Abs 0,559 0,541 0,273 0,558 1,191 1,451
SG 0,397 0,632 0,329 0,537 1,239 1,510
Soma de bases (cmol/kg) (DP = 7,502)
Bruto 0,599 4833 0,569 4850 1,547 0,551
PLSR Abs 0,445 5686 0,328 6,059 1238 0,441
SG 0,601 4823 0,601 4,669 1,607 0,572
— Bruto 0,596 4855 0,174 6,717 1,117 0,398
radial Abs 0,653 4,496 0,183 6,682 1,123 0,400
SG 0,659 4458 0,160 6,774 1,107 0,395
— Bruto 0,670 4387 0,347 5973 1256 0,447
linear Abs 0,750 3819 -9458 23,900 0314 0,112
SG 0,641 4571 0424 5610 1337 0476
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Tratamento —

RMSE

RZ

RMSE

Algoritmo dados espectrais R? calib. calib.  valid. valid. RPD — RPIQ
Bruto 0,723 4,019 0,590 4,730 1,586 0,565
Cubist Abs 0,999 0241 0,602 4,661 1,610 0,573
SG 0,999 0290 0,609 4,625 1,622 0,578

Capacidade de troca cationica (cmol/kg) (DP = 7,494)
Bruto 0,599 4,954 0,590 4,725 1,586 0,399
PLSR Abs 0,608 4,895 0,505 5,196 1,442 0,363
SG 0,668 4504 0269 6313 1,187 0,299
SUM. Bruto 0,422 5948 0,213 6,552 1,144 0,288
radial Abs 0,472 5685 0,166 6,744 1,111 0,280
SG 0,818 3332 0,087 7,055 1,062 0,267
— Bruto 0,710 4208 0,512 5158 1453 0,365
linear Abs 0,799 3,506 -3,167 15,070 0,497 0,125
SG 0,674 4462 0483 5308 1412 0,355
Bruto 0,999 0,193 0,521 5,107 1,467 0,369
Cubist Abs 1,000 0,171 0,552 4,944 1,516 0,381
SG 0,998 0320 0,446 5493 1364 0,343

Saturacao por bases (%) (DP = 27,743)
Bruto 0,845 10,344 0,335 22,284 1,245 2,266
PLSR Abs 0,833 10,730 0,331 22,363 1,241 2,258
SG 0,817 11,252 0,357 21,919 1266 2,304
SUM. Bruto 0,724 13,788 0,414 20919 1,326 2414
radial Abs 0,698 14,443 0432 20,598 1,347 2,452
SG 0,709 14,163 0,406 21,067 1,317 2,397
SUM. Bruto 0,871 9427 0,387 21,408 1296 2359
linear Abs 0,881 9,077 0,313 22,655 1,225 2,229
SG 0,801 11,717 0,408 21,022 1,320 2,402
Bruto 1,000 0,439 0,623 16,786 1,653 3,009
Cubist Abs 0,706 14,235 0,488 19,558 1,419 2,582
SG 1,000 0,479 0,699 14,995 1850 3,368
pH em agua (DP = 0,875)

Bruto 0,457 0,653 0,410 0,662 1,322 1,586
PLSR Abs 0,572 0,601 0,137 0801 1,093 1,311
SG 0,397 0,703 0,411 0,662 1322 1,587
— Bruto 0,292 0,756 0,250 0,747 1,172 1,406
radial Abs 0,259 0,766 0,276 0,733 1,193 1432
SG 0,255 0,792 0,256 0,744 1,177 1,412
SUM. Bruto 0,532 0,625 0,125 0,806 1,085 1,302
linear Abs 0,527 0,578 0,206 0,768 1,139 1,367
SG 0,446 0,654 0,355 0,692 1264 1,517
Cubist Bruto 0,367 0,711 0,122 0,808 1,083 1,300
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Tratamento — RMSE R? RMSE

Algoritmo dados espectrais R? calib. calib.  valid. valid. RPD — RPIQ
Abs 0,516 0,641 0,193 0,775 1,130 1,356
SG 0,384 0,703 0,486 0,618 1416 1,700

Percentagem de saturacdo por sodio (%)(DP = 16,142)
Bruto 0,901 3,775 0,058 15437 1,046 0,384
PLSR Abs 0,705 6,498 0,084 15221 1,060 0,389
SG 0,869 4326 0,067 15,358 1,051 0,386
SUM. Bruto 0,475 8,673 0,211 14,126 1,143 0,419
radial Abs 0,458 8,809 0,136 14,784 1,092 0,401
SG 0,441 8,890 0,215 14,090 1,145 0,420
SUM. Bruto 0,640 7,183 0,012 15804 1,021 0,375
linear Abs 0,755 5926 0,010 15823 1,020 0,374
SG 0,555 7,988 0,056 15453 1,045 0,383
Bruto 1,000 0,166 0,504 11,203 1,441 0,529
Cubist Abs 0,674 6,836 0,610 9,931 1,626 0,597
SG 1,000 0241 0,673 9,095 1,775 0,651

Condutividade elétrica (dS/m) (DP = 0,466)

Bruto 0,549 1,311 0,719 0243 1913 0,606
PLSR Abs 0,086 1,865 0,326 0377 1236 0,392
SG 0,496 1,384 0,734 0237 1,968 0,623
SUM. Bruto 0,241 1,699 0,609 0287 1,623 0,514
radial Abs 0,116 1,835 0,282 0,389 1,198 0,380
SG 0,240 1,700 0,620 0283 1,646 0,521
SUM. Bruto 0,368 1,551 0,399 0,356 1,309 0,415
linear Abs 0,413 1,495 0,560 0,304 1,531 0,485
SG 0,337 1,588  -1,152 0,673 0,692 0,219
Bruto 0,997 0,111 0,168 0418 1,113 0,353
Cubist Abs 0,998 0,083 0,160 0,421 1,107 0,351
SG 0,998 0,093 -0,528 0,567 0821 0,260

Conclusao
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APENDICE E - RESULTADO DA CALIBRACAO E VALIDACAO DOS MODELOS
PREDITIVOS PARA OS ATRIBUTOS FiSICOS COM ESPECTRO MIR

. Tratamento - p, RMSE . RMSE
Algoritmo dados . calib. calib. R? valid. valid. RPD RPIQ
espectrais

Areia (g/kg) (DP =161,953)
Bruto 0928 55922 0.838 64181 2523 4.137
PLSR  Abs 0.959 42,095 0514 111,188 1457 2,388
SG 0,931 54718 0,818 68,028 2381 3,903
Bruto 0,984 26,745 0,883 54538 2970 4868
Sr;;“iil‘ Abs 0,984 26017 0,867 58,181 2,784 4,563
SG 0982 28,100 0,883 54533 2970 4869
Bruto 0.985 25348 0,858 60215  2.690 4409
Sh\lllle\:gr Abs 098 24874 0517 110,849 1461 2395
SG 0.985 25770 0,845 62,783 2580 4229
Bruto 0.998 10436 0,893 52321 3,095 5074
Cubist  Abs 0931 54886 0,832 65314 2480 4,065
SG 0912 61,775 0872 57.062  2.838 4,653

Silte (g/kg) (DP = 127,192)
Bruto 0987 13,612 0,830 51656 2462 2817
PLSR  Abs 0.814 51,087 0,755 61969 2053 2,348
SG 0,789 54366 0,830 51669 2462 2816
Bruto 0967 21593 0,542 84815 1,500 1715
Sr;’dl\iil‘ Abs 0,985 14,671 0,596 79.645 1597 1,827
SG 0,961 23349 0,559 83258 1,528 1,748
Bruto 0991 11342 0,776 50259 2,146 2455
Sh‘l’lle\gr Abs 0,990 11916 0,717 66,684 1907 2,182
SG 0,991 11454 0,739 64064 1985 2271
Bruto 0981 16258 0,716 66,726 1906 2,181
Cubist  Abs 1,000 1452 0,729 65207 1951 2231
SG 0,993 9,803 0,768 60423 2105 2,408

Argila (g/kg) (DP =112,820)
Bruto 0.840 45731  0.835 45146 2499 3234
PLSR  Abs 0901 36011 0815 47750 2363 3,058
SG 0961 22515  0.855 42364 2,663 3,446
Bruto 0.938 28534 0,864 40958 2755  3.565
Sr;’dl\i’;l‘ Abs 0920 32317 0,850 43,041 2,621 3392
SG 0987 13264 0,879 38614 2922 3781
Bruto 0,990 11218 0,868 40460 2,788 3,608
Sh\l’lzgr Abs 0,990 11420 0,685 62333 1810 2,342
SG 0,990 11,503 0,783 51826 2,177 2817
Bruto 0.998 4,599 0,856 42244 2671 3456
Cubist  Abs 0,918 32,808 0,822 46,834 2400 3,117
SG 0,999 2,954 0,812 48,136 2344 3,033
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APENDICE F - RESULTADO DA CALIBRACAO E VALIDACAO DOS MODELOS
PREDITIVOS PARA OS ATRIBUTOS QUIMICOS COM ESPECTROS MIR

— 2 2

Aigoritmo e oectrais calib,  chib.  valid, valia, PP RPIQ
Carbono organico (g/kg) (DP = 2,772)

Bruto 0,992 0429 0,792 1246 2,226 3,119

PLSR  Abs 0,971 0804 0,703 1,488 1,863 2,611

SG 0,984 0,600 0,740 1,392 1,991 2,791

Bruto 0,990 0468 0,403 2,111 1313 1,840

SVM - Aps 0,992 0,425 05531 1,870 1,482 2,077

radial o 0,989 0487 0421 2,078 1334 1,869

Bruto 0,995 0348 0,734 1409 1,967 2,756

sh\rllle\gr Abs 0,994 0361 0,754 1355 2,047 2,868

SG 0,994 0362 0,608 1,501 1,848 2,589

Bruto 0,999 0,149 0,716 1455 1,906 2,671

Cubist  Abs 0,924 1296 0,800 1221 2271 3,182

SG 0,999 0,151 0,749 1,368 2,026 2,839
Nitrogénio (g/kg) (DP =0,561)

Bruto 0,992 0,079 0,727 0289 1,944 1,828

PLSR  Abs 0910 0270 0,615 0343 1,635 1537

SG 0,981 0,123 0,738 0283 1,984 1,866

Bruto 0,994 0,068 0393 0430 1,303 1,226

i;/dl\iil‘ Abs 0,994 0,068 0431 0417 1,346 1265

SG 0,995 0,066 0373 0438 1281 1,205

Bruto 0,995 0,066 0,673 0316 1,775 1,669

Sh‘r’lggr Abs 0,994 0067 0,693 0306 1,832 1,722

SG 0,994 0,068 0,702 0302 1,859 1,748

Bruto 0,999 0,035 0443 0412 1,360 1,279

Cubist  Abs 0,905 0277 0,658 0323 1,735 1,632

SG 1,000 0,014 0423 0420 1336 1257
Fosfoéro (mg/kg) (DP = 22,603)

Bruto 0,743 6,856 0,511 15571 1,452 0,469

PLSR  Abs 0352 10,896 0,181 20,151 1,122 0,362

SG 0,742 6,868 0,587 14311 1,579 0,510

Bruto 0204 12,070 -0,015 22434 1,008 0325

i;’dl\i’:d' Abs 0,91 12,168 -0,033 22,627 0,999 0,323

SG 0215 11,988 -0,024 22529 1,003 0,324

Bruto 0,996 0,895 0,681 12,585 1,796 0,580

Sll\rllle\;[,r Abs 0,996 0,894 0,735 11,459 1,973 0,637

SG 0,996 0,887 0,773 10,600 2,132 0,689

Bruto 0,559 8,989 0,056 21,634 1,045 0337

Cubist  Abs 0,611 8440 0,051 21,69 1,042 0336

Continua...
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— 2 2
Algoritmo d:gszae?;::&ais caRlib. IZﬁ/llliE V;}id. 1371;’11313 RPD  RPIQ
SG 0,573 8,843 0,040 21,821 1,036 0335
Potassio (cmol./kg) (DP = 0,078)
Bruto 0,972 0,012 0,580 0,050 1,566 1,580
PLSR  Abs 0,576 0,047 0,644 0,046 1,700 1,716
SG 0,882 0,025 0,604 0,048 1,624 1,639
Bruto 0,822 0,030 0434 0058 1349 136l
SVMI‘ Abs 0,893 0,024 0,550 0,052 1,514 1,528
radial g 0.897 0023 0494 0055 1428 1441
Bruto 0,990 0,007 0,464 0056 1,387 1,400
sh\rllle\tgr Abs 0,990 0,007 0,566 0051 1,540 1,555
SG 0,990 0,007 0395 0,060 1,305 1317
Bruto 0,999 0,002 0,495 0,055 1,428 1,441
Cubist  Abs 1,000 0,001 0,585 0,050 1,576 1,590
SG 0,999 0,003 0,477 0,056 1,404 1,402
Célcio (cmol/kg) (DP = 5,032)
Bruto 0,440 2,592 0,182 4483 1,123 0,297
PLSR  Abs 0,595 2,204 0281 4205 1,197 0316
SG 0,601 1,925 0245 4308 1,168 0,309
Bruto 0,800 1,550 0,309 4,123 1221 0,323
Sr;’(il\iil‘ Abs 0,801 1,546 0,338 4,035 1247 0,330
SG 0,749 1,734 0288 4,182 1203 0318
Bruto 0,976 0,532 -0341 5740 0,877 0232
Sh‘l?e\gr Abs 0,977 0,526 0290 4,178 1205 0318
SG 0979 0504 0321 4,08 1231 0325
Bruto 0,999 0,091 0332 4,052 1242 0328
Cubist  Abs 1,000 0,022 0327 4,066 1238 0,327
SG 0,999 0,091 0295 4,162 1209 0,320
Magnésio (cmol/kg) (DP = 1,950)
Bruto 0,963 0812 0,530 1317 1,480 0,759
PLSR  Abs 0,828 1,755 0,499 1360 1434 0735
SG 0,765 2,052 0,569 1261 1,547 0,793
Bruto 0,395 2817 0,634 1,162 1,679 0,861
SVM - Aps 0,588 2,715 0,605 1207 1,615 0,828
radial o 0,997 0244 0,638 1,156 1,686 0,865
Bruto 0,996 0264 0,568 1262 1,545 0,792
Sh‘r’lxr Abs 0,996 0253 0469 1400 1392 0,714
SG 0,996 0265 0,570 1260 1,548 0,794
Bruto 1,000 0,029 0,103 1819 1,072 0,550
Cubist  Abs 1,000 0,029 0,547 1296 1,509 0,774
SG 1,000 0,050 0286 1,623 1201 0,616
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— 2 2
Algoritmo d:gszae?sgsg‘ais caRlib. IZ?:IIEE V:}id. 1371;’11313 RPD  RPIQ
Sédio (cmol/kg) (DP = 1,687)

Bruto 0,594 1228 0,465 1216 1,387 0214

PLSR  Abs 0,969 0341 0344 1346 1253 0,194
SG 0,558 1282 0,515 1,157 1,458 0225

Bruto 0,782 0,900 0,446 1236 1364 0211

i;’dl\i’:ﬂ' Abs 0,998 0,092 0,472 1208 1,396 0216
SG 0,741 0,981 0,447 1236 1364 0211

Bruto 0,998 0,000 0275 1415 1,192 0,184

Sh\r/lle:/ellr Abs 0,998 0,092 0361 1329 1270 0,196
SG 0,996 0,129 0,400 1288 1310 0,202

Bruto 1,000 0,019 0593 1,060 1,591 0,246

Cubist  Abs 1,000 0,005 0611 1,036 1,628 0251
SG 1,000 0,017 0465 1216 1,387 0214

Aluminio trocavel (cmol./kg) (DP = 0,665)

Bruto 0,685 0457 0,689 0366 1,819 2216

PLSR  Abs 0,410 0,625 0,585 0422 1,576 1,921
SG 0,630 0495 0,712 0352 1,890 2,303

Bruto 0,974 0,132 0,675 0373 1,781 2,170

i;/dl\iil‘ Abs 0,991 0,078 0,628 0399 1,665 2,029
SG 0,783 0379 0,630 0398 1,670 2,035

Bruto 0,91 0077 0,606 0411 1,617 1,970

Sh‘r’lzgr Abs 0,991 0,077 0,598 0415 1,600 1,950
SG 0,991 0078 0326 0538 1236 1,506

Bruto 0,974 0,130 0,567 0431 1,542 1,879

Cubist  Abs 1,000 0,007 0557 0436 1,525 1,859
SG 0,974 0,131 0,573 0428 1,553 1,892

Soma de bases (cmol./kg) (DP = 7,502)

Bruto 0,824 3207 0,596 4,700 1,596 0,569

PLSR  Abs 0,779 3,591 0,531 5062 1,482 0,528
SG 0,838 3,072 0,620 4554 1,647 0,587

Bruto 0917 2,196 0,529 5071 1,479 0,527

S‘iiMl‘ Abs 0,978 1,145 0485 5302 1415 0,504
e 0,923 2,134 0537 5032 1491 0531
Bruto 0,984 0965 0352 5949 1261 0,449

sh\lllle\:gr Abs 0,980 1,082 0468 5390 1,392 0,496
SG 0,983 1,000 0,648 4387 1,710 0,609

Bruto 1,000 0,101 0428 5591 1,342 0,478

Cubist  Abs 0,915 2226 0461 5428 1382 0,492
SG 1,000 0,060 0444 5512 1361 0,485

Capacidade de troca catidnica (cmol/kg) (DP = 7,494)
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— 2 2
Algoritmo d:gszae?;::&ais caRlib. IZﬁ/llliE V;}id. 1371;’11313 RPD  RPIQ
Bruto 0,856 2,966 0,543 4989 1,502 0378
PLSR  Abs 0,774 3,722 0473 5361 1398 0,352
SG 0,847 3,061 0,569 4,849 1,545 0,389
Bruto 0,949 1,766 0,490 5273 1,421 0,357
i;;l\iil' Abs 0,861 2916 0,464 5405 1387 0,349
SG 0,956 1,642 0,490 5273 1,421 0357
Bruto 0,988 0848 0,427 5588 1341 0337
Sh\r/lle:/ellr Abs 0,987 0906 0356 5924 1265 0318
SG 0,978 0888 0,616 4578 1,637 0412
Bruto 1,000 0,071 0463 5409 1385 0,348
Cubist  Abs 1,000 0,032 0486 5294 1415 0,356
SG 1,000 0,081 0489 5276 1,420 0357
Saturacdo por bases (%) (DP =27,743)
Bruto 0,683 14795 0,422 20,776 1,335 2,431
PLSR  Abs 0,620 16,183 0,584 17,635 1,573 2,864
SG 0,604 14541 0425 20,732 1338 2,436
Bruto 0,922 7,343 0,540 18,545 1,496 2,723
Sr;’dl\iil' Abs 0,971 4473 0,541 18,515 1,498 2,727
SG 0,779 12349 0,522 18,895 1,468 2,673
Bruto 0,989 2,797 0,070 26365 1,052 1915
Sll\rllle\;[.r Abs 0,989 2,768 0,046 26,702 1,039 1,891
SG 0,989 2,765 0,290 23,025 1,205 2,193
Bruto 0,887 8833 0,658 15977 1,736 3,161
Cubist  Abs 0,888 8803 0,600 17,303 1,603 2,919
SG 0913 7,742 0,568 17,963 1,545 2811
pH em 4gua (DP = 0,875)
Bruto 0,777 0431 0,510 0,603 1,451 1,741
PLSR  Abs 0,744 0460 0,553 0576 1,518 1,822
SG 0,714 0441 0417 0658 1,329 1,595
Bruto 0,593 0533 0,545 0581 1,505 1,806
Sr;iil\iil‘ Abs 0,577 0,562 0,497 0611 1431 1,718
SG 0,603 0,547 0491 0615 1,423 1,708
Bruto 0,761 0,419 0,521 05597 1,466 1,759
sh\rllle\tgr Abs 0,608 0496 0,540 05585 1,497 1,796
SG 0,568 0,614 0410 0662 1,321 1,585
Bruto 0,727 0453 0,466 0630 1,389 1,667
Cubist  Abs 0,624 0515 0451 0639 1370 1,644
SG 0,707 0454 0,535 0,588 1,488 1,786
Percentagem de saturacdo por sodio (%) (DP = 16,142)
Bruto 0,663 6,948 0366 12,664 1275 0,542
PLSR  Aps 0961 2378 0319 13,122 1230 0458
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— 2 2

Algoritmo d:gszae?sgsg‘ais caRlib. IZ?:IIEE V:}id. 1371;’11313 RPD  RPIQ
SG 0,674 6,837 0327 13,044 1238 0454

Bruto 0,832 4,903 0265 13,631 1,184 0435
i;’dl\iil' Abs 0,996 0,790 0,345 12,870 1254 0,460
SG 0,810 5221 0286 13,439 1201 0,441

Bruto 0,996 0,799 0364 12,679 1273 0,467
Sh‘r’lle\gr Abs 0,996 0,794 0374 12,578 1283 0471
SG 0,996 0,779 0,376 12,567 1,285 0471

Bruto 1,000 0,086 0208 14,153 1,141 0,419

Cubist  Abs 1,000 0,082 0,185 14355 1,124 0,413
SG 0,999 0428 0,153 14,634 1,103 0405

Condutividade elétrica (dS/m) (DP = 4,666)

Bruto 0,406 1,504 0,600 0290 1,605 0,508

PLSR  Abs 0,867 0,712 0381 0361 1,290 0,409
SG 0382 1,533 0,832 0,188 2478 0,785

Bruto 0,981 0271 0,474 0333 1,400 0,443

Sr;’dl\iil' Abs 0,981 0271 0,515 0319 1,458 0462
SG 0,981 0271 0,600 0290 1,606 0,509

Bruto 0,982 0265 0231 0402 1,158 0367

Sil\lqur Abs 0,981 0268 0365 0365 1274 0,404
SG 0,982 0264 0459 0338 1379 0437

Bruto 0,783 0910 -0363 0536 0,869 0275

Cubist  Abs 0,849 0,759 0,200 0410 1,135 0,359
SG 0,997 0,106 0215 0406 1,146 0,363

Conclusio



