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RESUMO: A salinização é uma das principais causas de degradação do solo no mundo, 

todavia, esse fenômeno ocorre com maior frequência em regiões áridas e semiáridas. Nesse 

contexto, este estudo tem como objetivo prever a condutividade elétrica de solos do Ceará, 

usando informações espectrais na faixa de 350 a 2500 nm associadas à regressão por mínimos 

quadrados parciais. Além disso, busca-se avaliar se o pré-processamento espectral melhora os 

modelos de regressão. Foram analisadas 114 amostras de solo oriundas de municípios do Ceará. 

As amostras foram avaliadas com método tradicional para determinar a condutividade elétrica 

(CE), e com método espectral na faixa do visível ao infravermelho de ondas curtas (350 – 2500 

nm). Os resultados da CE foram analisados com estatística descritiva. Os dados espectrais 

foram submetidos a técnicas de pré-processamentos, e para a modelagem da CE os espectros 

brutos e processados foram usados juntamente com o algoritmo de regressão por mínimos 

quadrados parciais. A estatística descritiva dos solos evidenciou a presença de caráter salino 

e/ou sálico. O modelo preditivo com os dados transformados em absorbância obteve o melhor 

desempenho (R² = 0,74 e RPD = 2,0). 

PALAVRAS-CHAVE: espectroscopia de reflectância; salinidade; regressão. 

 

 

SPECTRAL PREDICTION OF SOIL ELECTRICAL CONDUCTIVITY USING 

VISIBLE AND NEAR-INFRARED SPECTROSCOPY 

 

ABSTRACT: Salinization is one of the main causes of soil degradation worldwide, but this 

phenomenon occurs more frequently in arid and semi-arid regions. In this context, this study 

aims to predict the electrical conductivity of soils in Ceará, using spectral information in the 

range of 350 to 2500 nm associated with partial least squares regression. In addition, we seek 

 
1 Doutoranda em Ciência do Solo, Departamento de Ciências do Solo, UFC, Rua Campus do Pici s/n Bloco 807, CEP 

60440554, Fortaleza, CE. Fone (85) 987563791, e-mail: evelicesouza@gmail.com. 
2 Prof. Doutor, Departamento de Ciências do Solo, UFC, Fortaleza, CE. 
3 Estudante de Agronomia, UFC, Fortaleza, CE. 



F. E. C. de Souza et al. 

2 

to evaluate whether spectral preprocessing improves regression models. A total of 114 soil 

samples from municipalities in Ceará were analyzed. The samples were evaluated using the 

traditional method to determine electrical conductivity (EC) and the spectral method in the 

visible to shortwave infrared range (350–2500 nm). The EC results were analyzed using 

descriptive statistics. The spectral data were subjected to pre-processing techniques, and for EC 

modeling, the raw and processed spectra were used together with the partial least squares 

regression algorithm. Descriptive statistics of the soils showed the presence of saline and/or 

salic character. The predictive model with the data transformed into absorbance obtained the 

best performance (R² = 0.74 and RPD = 2.0). 

KEYWORDS: reflectance spectroscopy; salinity; regression. 

 

 

INTRODUÇÃO 

 

A salinização é uma das principais causas de degradação das terras, caracterizando-se 

pelo acúmulo progressivo de sais solúveis na superfície do solo (Wang et al., 2023). O excesso 

de sais no solo ocasiona graves impactos no desenvolvimento vegetal, comprometendo a 

segurança alimentar globalmente (Sun et al., 2024). A salinização é gerada tanto por processos 

naturais quanto por práticas antrópicas inadequadas, como o uso de água de baixa qualidade na 

irrigação e o manejo inadequado do solo (Muhammad et al., 2024).  

O fenômeno da salinização ocorre com maior frequência em regiões áridas e semiáridas, 

cujas condições climáticas com uma elevada taxa de evapotranspiração associada à baixa 

precipitação, intensificam a concentração de sais na superfície do solo (Hailu; Mehari, 2021). 

Atualmente, aproximadamente 1,4 bilhão de hectares de terras em todo o mundo estão afetados 

por sais (FAO, 2024). No Brasil, esse fenômeno manifesta-se de forma preocupante, sobretudo 

em áreas irrigadas. 

Tradicionalmente, a salinidade é avaliada em laboratório por meio da determinação da 

condutividade elétrica (CE) do solo (Barreto et al., 2023). Todavia, essa metodologia demanda 

o preparo específico das amostras e maior tempo de análise, além de apresentar alto custo, 

limitando a abrangência do mapeamento de áreas salinas. Considerando esses aspectos, são 

estudadas metodologias alternativas, como o sensoriamento, a fim de avaliar a salinidade e 

monitorar essas áreas de forma mais rápida e economicamente viável. 

Nessa perspectiva, sensores remotos multiespectrais vêm sendo sucessivamente 

empregados para mapear e monitorar a salinidade. Entretanto, aspectos como resolução de 



34º CONIRD, 9º Inovagri International Meeting e 5º SBS-Agris, 2025 

3 

imagem e dossel da vegetação podem limitar a determinação remota de sais (Barreto et al., 

2023). Diante disso, o emprego de sensores próximos hiperespectrais, associados à 

espectroscopia de reflectância, desponta como uma técnica promissora de avaliação da 

salinidade (Pessoa et al., 2016). 

A técnica da espectroscopia de reflectância destaca-se por realizar análises rápidas, 

exigindo preparação mínima das amostras (Lotfollahi et al., 2023). A análise do solo com essa 

técnica ocorre nas faixas do visível (Vis: 350-750 nm), infravermelho próximo (NIR: 750-1100 

nm), infravermelho de ondas curtas (SWIR: 1100-2500 nm) e infravermelho médio (MIR: 

2500-25000 nm ou 4000-400 cm-1) (Mendes et al., 2022), sendo os dados espectrais geradas 

nessas faixas associados a métodos estatísticos para obter modelos preditivos.  

A espectroscopia tem se destacado pelo seu grande potencial na caracterização dos solos, 

contudo, o seu uso para identificar a salinização ainda é incipiente, especialmente em regiões 

áridas e semiáridas. Nesse contexto, este estudo tem como objetivo prever a condutividade 

elétrica de solos do Ceará, usando informações espectrais na faixa de 350 a 2500 nm associadas 

à regressão por mínimos quadrados parciais (PLSR). Além disso, busca-se avaliar se o pré-

processamento espectral melhora os modelos de regressão.  

 

 

MATERIAL E MÉTODOS 

 

Neste estudo foram utilizadas amostras de solo depositadas no acervo do Laboratório de 

Análises de Solos, Águas, Tecidos e Adubos, que fica localizado no Departamento de Ciência 

do Solo da Universidade Federal do Ceará (UFC). Os solos avaliados eram provenientes de 13 

municípios do Ceará localizados nas mesorregiões Noroeste Cearense, Norte Cearense e 

Metropolitana de Fortaleza, e integram os dados do Levantamento de reconhecimento de média 

intensidade dos solos do Estado do Ceará, publicado em 2024. 

Foram analisadas 114 amostras de solos, que compõem 24 perfis pedológicos 

classificados em 9 ordens de solos. As análises com a metodologia tradicional (química úmida) 

e espectral foram realizadas em amostras de terra fina seca ao ar (TFSA). Para tanto, os solos 

foram dispostos na sombra e ao ar para secagem, em seguida foram moídos e tamisados em 

peneira com malha de abertura de 2 mm. 

Na análise pelo método tradicional, a condutividade elétrica (CE) do solo foi avaliada de 

acordo com o Manual de Métodos de Análise de Solo da Embrapa (Teixeira et al., 2017). Para 

as análises espectrais, as amostras de TFSA foram submetidas ao processo de secagem em 
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estufa com circulação forçada de ar em temperatura de 45 °C durante 24 horas, a fim de 

homogeneizar os efeitos da umidade do solo (Epiphanio et al. 1992).  

Os dados espectrais de reflectância foram obtidos com o auxílio de uma sonda de contato 

(Hi-Brite Contact Probe) e do espectrorradiômetro FieldSpec Pro FR 3 (Analytical Spectral 

Devices, Boulder, Colorado, USA). Esse instrumento realiza leituras na faixa do visível ao 

infravermelho de ondas curtas (350 – 2500 nm) e possui resolução espectral de 3 nm e 10 nm 

reamostrados para 1 nm, o que confere 2151 feições.  

Para a leitura dos dados espectrais na faixa Vis-NIR-SWIR, o sensor do equipamento foi 

calibrado a cada 20 minutos. A calibração é realizada por meio da leitura de uma placa branca 

(Spectralon), que é considerada como padrão de referência de 100% de reflectância. Na 

superfície de cada amostra foram executadas três leituras espectrais, tendo em vista efetuar a 

total varredura da amostra e obter uma boa representatividade. 

Os dados espectrais brutos foram submetidos aos pré-processamentos de suavização 

Savitzky-Golay e conversão dos valores para absorbância, visando suprimir ruídos e 

informações irrelevantes e melhorar a qualidade dos dados espectrais para os processos de 

modelagem subsequentes. O pré-processamento dos dados espectrais e as análises estatísticas 

foram realizadas no software R (R Core Team, 2024). 

Análises de estatística descritiva foram aplicadas ao resultado da condutividade elétrica. 

Foi avaliada, ainda, a normalidade dos dados com o teste de hipótese de normalidade - 

Kolmogorov-Smirnov a 5%. Diante da não normalidade dos dados, a transformação logaritmo 

de base 10 foi aplicada para obter valores normalmente distribuídos e melhorar o desempenho 

dos modelos.  

Para obter os modelos preditivos os dados foram separados em 75% das amostras para 

calibração e 25% para teste do modelo com dados inéditos. Para tanto, uma seleção aleatória 

foi realizada com base nos perfis de solo, a fim de abranger todos os perfis e evitar a ocorrência 

de vieses. Na fase de calibração foi feita a validação cruzada k-fold 10 vezes. A modelagem da 

CE foi realizada com o algoritmo de regressão por mínimos quadrados parciais (PLSR) 

associado aos espectros brutos de reflectância e aos espectros pré-processados. 

A avaliação do desempenho dos modelos preditivos foi feita com base nas métricas de 

coeficiente de determinação (Equação 1), raiz do erro quadrático médio (Equação 2) e razão da 

performance do desvio (Equação 3). Antes de computar essas métricas, os valores de CE foram 

retransformados para suas unidades originais. 
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        (1) 

 

Em que, R² = coeficiente de determinação; Ŷ = valor predito; Ȳ = média dos valores 

observados; Y = valor observado; n = número de amostras. 

 

      (2) 

 

Em que, RMSE = raiz do erro quadrático médio; n = número de amostras; m = número 

de amostras usadas para predição; yi’-yi = valores preditos e observados, respectivamente. 

 

      (3) 

 

Em que, RPD = razão da performance do desvio; σ = desvio padrão para os valores 

observados. 

 

O desempenho dos modelos foi dividido em classes mediante os valores obtidos nas 

métricas. Para os resultados de R², Terra et al. (2015) sugerem as seguinte classes: R2 > 0,75 - 

modelos bem ajustados para prever com precisão os atributos do solo; 0,50 ≤ R2 ≤ 0,75 - 

modelos justos, mas que podem ser melhorados; e R2 < 0,50 - modelos não confiáveis e sem 

capacidade de predição. Com base nos valores de RPD, é sugerido por Sun et al. (2024) as 

classes de: RPD > 2 - modelos excelentes: 1,4 ≤ RPD < 2 - modelos com desempenho 

moderado; RPD < 1,4 – modelos sem capacidade de predição. 

 

 

RESULTADOS E DISCUSSÃO 

 

A análise de estatística descritiva (Tabela 1) revelou que a condutividade elétrica média 

das amostras de solo foi de 0,65 dS/m, sendo considerada baixa. No entanto, o desvio padrão 

(1,68 dS/m) foi alto em relação à média, e o valor máximo de CE observado (10,15 dS/m) indica 

que alguns dos solos avaliados apresentaram caráter salino e/ou sálico, que são condições 

potencialmente prejudiciais à qualidade do solo e a produtividade agrícola (Santos et al., 2018). 
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Tabela 1. Estatística descritiva para os valores de condutividade elétrica (dS/m) do solo. 

Média Mediana Mínimo Máximo Q1(1) Q3(2) SD(3) p-valor(4) 

0,65 0,14 0,01 10,15 0,08 0,28 1,68 7,34E-20 

 (1) Quartil 1 (Q1); (2) Quartil 2 (Q2); (3) Desvio padrão (SD); (4) p-valor do teste de normalidade Kolmogorov-Smirnov. 

 

O teste de normalidade de Kolmogorov-Smirnov indicou que os dados de CE não seguem 

uma distribuição normal, comportamento o qual é bastante comum em atributos pedológicos 

(Bellon-Maurel et al., 2010). O elevado desvio padrão e a não normalidade dos dados refletem 

a heterogeneidade dos solos estudados, que apresentam características contrastantes. Esses 

resultados sugerem que modelos preditivos para CE devem levar em conta abordagens robustas 

voltadas a dados heterogêneos. 

A modelagem de CE com dados espectrais (Tabela 2) revelou, com base nos valores das 

métricas obtidas na validação com dados inéditos, que todos os modelos desenvolvidos 

apresentaram confiabilidade e desempenho moderado, exibindo R² ≥ 0,50. Apesar disso, ajustes 

são necessários para melhorar a precisão da predição. 

Tabela 2. Resultado da calibração e teste do modelo PLSR para estimativa da condutividade elétrica (dS/m) do 

solo na faixa espectral 350 – 2500 nm. 

Tratamento - 

dados 

espectrais2 

NºC(3) R² cal.(4) RMSE(5) R² val.(6) RMSE RPD(7) 

 

DP(8) 

 

Bruto 13 0,52 1,31 0,60 0,29 1,60 0,46 

Abs(1) 12 0,59 1,21 0,74 0,23 2,00 0,46 

SG(2) 13 0,48 1,36 0,58 0,29 1,57 0,46 

 (1) Absorbância (Abs); (2) Suavização Savitzky-Golay (SG); (3) Número de componentes do modelo (Nº C); (4) Coeficiente 

de determinação de calibração (R² cal.); (5) Raiz do erro quadrático médio (RMSE); (6) Coeficiente de determinação de 

validação (R² val.); (7) Razão da performance do desvio (RPD); (8) Desvio padrão (DP).  

 

Dentre os modelos desenvolvidos, a melhor performance ocorreu para a regressão PLSR 

aplicada aos dados espectrais transformados em absorbância, cujas métricas se aproximaram 

dos valores classificados como de acurácia excelente. Em contraste, o pré-processamento com 

o filtro SG resultou no menor desempenho, com as métricas de R² e RPD próximas ao limite 

mínimo de confiabilidade para modelos preditivos. 

A conversão dos dados espectrais para absorbância destacou-se como a técnica de pré-

processamento mais eficiente para aprimorar a predição CE, evidenciando que nem todos os 

métodos de pré-processamento produzem o mesmo efeito sobre o desempenho dos modelos. 

Esse resultado corrobora trabalhos anteriores que demonstram que o processamento espectral 
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pode ressaltar de modo eficiente pequenas diferenças nos dados, aumentando a sensibilidade 

da regressão às variações na salinidade do solo (Sun et al., 2024). 

Os modelos obtidos apresentaram desempenho superior ao relatado por Lotfollahi et al. 

(2023) para a predição espectral da salinidade do solo na região do visível ao infravermelho 

próximo, porém, foi inferior ao resultado reportado por Sun et al. (2024). O menor desempenho 

preditivo da CE pode estar relacionado à ausência de assinaturas específicas desse atributo, de 

modo que a maior precisão é obtida para atributos com características espectrais ativas ou 

quando há alta concentração do elemento no solo e quando ocorre elevada correlação com 

elementos espectralmente ativos (Ng et al., 2022). 

 

 

CONCLUSÕES 

 

O emprego do algoritmo de regressão por mínimos quadrados parciais em associação com 

dados espectrais na faixa de 350-2500 nm possibilitou gerar modelos de predição da CE do solo 

com confiabilidade. A transformação dos dados de reflectância para absorbância foi uma 

estratégia eficiente para melhoria da precisão dos modelos de predição. 

Os resultados obtidos reforçam o potencial da espectroscopia de reflectância como 

método promissor para avaliar a salinidade em larga escala e como técnica alternativa as 

análises convencionais. Contudo, destaca-se que estudos mais amplos abordando essa técnica 

são necessários, a fim de cada vez mais melhorar a acurácia da predição espectral. 
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